Arena 项目教程
1. 项目目录结构及介绍
Arena 是一个用于 Kubernetes 上 AI 训练和推理的命令行工具。其目录结构通常包括以下几个部分:
.
├── docs # 文档和教程
├── cmd # 包含不同子命令的源代码,如 arena、arena-server 等
├── pkg # 共享库和组件
│ ├── client # 客户端接口
│ └── server # 服务器端处理逻辑
├── deploy # 部署相关的资源配置
└── examples # 示例用例
docs 目录包含了所有项目的文档和指南。
cmd 中的 arena 子目录是 CLI 工具的实现,而 arena-server 可能是后台服务的源码。
pkg 是核心代码包,client 提供了与 Kubernetes API 的交互接口,server 处理服务端的业务逻辑。
deploy 文件夹包含了部署 Arena 到 Kubernetes 集群所需的所有资源定义。
examples 存放了一些示例,帮助用户了解如何使用 Arena 进行模型训练和推理。
2. 项目的启动文件介绍
在 Arena 项目中,启动文件通常是位于 cmd 下某个子命令的主入口点。例如,如果你要启动 Arena CLI,它可能有一个名为 main.go 的文件,位于 cmd/arena/main.go。这个文件通常包含以下关键元素:
package main
import (
"github.com/kubeflow/arena/cmd"
)
func main() {
cmd.Execute()
}
cmd.Execute() 负责加载子命令并解析命令行参数,然后执行相应的操作。
3. 项目的配置文件介绍
Arena 不一定有单独的全局配置文件,但某些功能可能需要 Kubernetes 配置(kubeconfig)来连接集群。默认情况下,它会查找 $HOME/.kube/config 文件以获取集群信息。若要在特定环境中设置不同的 kubeconfig,可以使用环境变量 KUBECONFIG 或通过 -k/--kubeconfig 参数指定。
此外,对于运行训练任务时可能涉及到的配置,比如 GPU 分配、超参数等,这些信息通常作为命令行参数传递给 Arena 命令。例如,在创建 TensorFlow 训练任务时,你可以指定 --gpus 参数来分配 GPU 数量,或者 --args 来传递额外的训练参数。
arena submit tfjob my-tf-job --gpus 1 --replicas 1 --image tensorflow/tensorflow:latest-gpu \
--sync-mode fsync --working-dir /data \
--command "python /path/to/train.py --some-param value"
请注意,上述解释是基于一般工程实践,具体的目录结构和启动文件细节可能会因项目版本或开发者的实现方式有所不同。建议查阅项目源代码和官方文档以获得最准确的信息。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00