Arena 项目教程
1. 项目目录结构及介绍
Arena 是一个用于 Kubernetes 上 AI 训练和推理的命令行工具。其目录结构通常包括以下几个部分:
.
├── docs # 文档和教程
├── cmd # 包含不同子命令的源代码,如 arena、arena-server 等
├── pkg # 共享库和组件
│ ├── client # 客户端接口
│ └── server # 服务器端处理逻辑
├── deploy # 部署相关的资源配置
└── examples # 示例用例
docs 目录包含了所有项目的文档和指南。
cmd 中的 arena 子目录是 CLI 工具的实现,而 arena-server 可能是后台服务的源码。
pkg 是核心代码包,client 提供了与 Kubernetes API 的交互接口,server 处理服务端的业务逻辑。
deploy 文件夹包含了部署 Arena 到 Kubernetes 集群所需的所有资源定义。
examples 存放了一些示例,帮助用户了解如何使用 Arena 进行模型训练和推理。
2. 项目的启动文件介绍
在 Arena 项目中,启动文件通常是位于 cmd 下某个子命令的主入口点。例如,如果你要启动 Arena CLI,它可能有一个名为 main.go 的文件,位于 cmd/arena/main.go。这个文件通常包含以下关键元素:
package main
import (
"github.com/kubeflow/arena/cmd"
)
func main() {
cmd.Execute()
}
cmd.Execute() 负责加载子命令并解析命令行参数,然后执行相应的操作。
3. 项目的配置文件介绍
Arena 不一定有单独的全局配置文件,但某些功能可能需要 Kubernetes 配置(kubeconfig)来连接集群。默认情况下,它会查找 $HOME/.kube/config 文件以获取集群信息。若要在特定环境中设置不同的 kubeconfig,可以使用环境变量 KUBECONFIG 或通过 -k/--kubeconfig 参数指定。
此外,对于运行训练任务时可能涉及到的配置,比如 GPU 分配、超参数等,这些信息通常作为命令行参数传递给 Arena 命令。例如,在创建 TensorFlow 训练任务时,你可以指定 --gpus 参数来分配 GPU 数量,或者 --args 来传递额外的训练参数。
arena submit tfjob my-tf-job --gpus 1 --replicas 1 --image tensorflow/tensorflow:latest-gpu \
--sync-mode fsync --working-dir /data \
--command "python /path/to/train.py --some-param value"
请注意,上述解释是基于一般工程实践,具体的目录结构和启动文件细节可能会因项目版本或开发者的实现方式有所不同。建议查阅项目源代码和官方文档以获得最准确的信息。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00