libvips图像处理库技术文档
1. 安装指南
1.1 包管理器安装
对于大多数类Unix操作系统(包括macOS),可以通过包管理器进行安装。请检查您的系统包管理器。
1.2 Windows二进制安装
Windows系统上,可以在发布页面找到预编译的二进制文件。
1.3 从源代码构建
libvips使用Meson构建系统,版本0.56或更高。Meson可以使用ninja、Visual Studio或XCode作为后端,因此您需要安装其中之一。
构建libvips前,需要确保安装了build-essential、pkg-config、libglib2.0-dev、libexpat1-dev等依赖。查看以下可选依赖部分获取完整依赖列表。
基本构建步骤如下:
cd libvips-x.y.z
meson setup build --prefix /my/install/prefix
cd build
meson compile
meson test
meson install
仔细检查meson setup的输出,确保找到了所需的依赖项。可以通过添加参数到meson setup来修改构建配置。
- 使用
-Dnsgif=false之类的标志来开启或关闭libvips选项,查看meson_options.txt获取所有构建选项。 - 使用
-Dmagick=disabled之类的标志来开启或关闭libvips的依赖,查看meson_options.txt和下面的列表获取所有libvips依赖。
其他选项包括:
- 在Debian系统上,如果不想在库路径中加入架构名称,可能需要添加
--libdir lib。 - 为了静态构建,可以添加
--default-library static。 - 使用例如
CC=clang CXX=clang++ meson setup ...来更改编译器。 - 可以创建多个
build-dir,使用不同的名称,例如为发布和调试各创建一个。
安装后,可以运行pytest在libvips基目录下进行更全面的测试。
2. 项目的使用说明
libvips支持多种编程语言绑定,包括C、C++、Python、Ruby、PHP、C#/.NET、Go、Lua、Crystal和Elixir。用户可以通过以下方式使用libvips:
- 命令行界面:libvips提供了命令行界面,用户可以直接通过命令行执行图像处理操作。
- 编程语言绑定:用户可以选择支持的语言绑定,使用libvips提供的API进行图像处理。
3. 项目API使用文档
libvips提供了大约300个操作,包括算术、直方图、卷积、形态学操作、频率滤波、颜色处理、重采样、统计等。它支持多种图像格式,包括JPEG、JPEG2000、JPEG-XL、TIFF、PNG、WebP、HEIC、AVIF、FITS、Matlab、OpenEXR、PDF、SVG、HDR、PPM/PGM/PFM、CSV、GIF、Analyze、NIfTI、DeepZoom和OpenSlide等。
具体API使用文档可以在libvips的官方网站上找到。
4. 项目安装方式
安装libvips的方式如下:
4.1 使用包管理器
对于大多数类Unix操作系统,可以使用系统包管理器安装libvips。
4.2 下载预编译二进制文件
对于Windows系统,可以从libvips的发布页面下载预编译的二进制文件。
4.3 从源代码构建
按照上述1. 安装指南中1.3. 从源代码构建部分的说明进行操作。确保安装所有必需的依赖项,然后使用Meson构建系统进行编译和安装。
以上是libvips图像处理库的技术文档,希望对您使用libvips有所帮助。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00