libvips图像处理库技术文档
1. 安装指南
1.1 包管理器安装
对于大多数类Unix操作系统(包括macOS),可以通过包管理器进行安装。请检查您的系统包管理器。
1.2 Windows二进制安装
Windows系统上,可以在发布页面找到预编译的二进制文件。
1.3 从源代码构建
libvips使用Meson构建系统,版本0.56或更高。Meson可以使用ninja、Visual Studio或XCode作为后端,因此您需要安装其中之一。
构建libvips前,需要确保安装了build-essential、pkg-config、libglib2.0-dev、libexpat1-dev等依赖。查看以下可选依赖部分获取完整依赖列表。
基本构建步骤如下:
cd libvips-x.y.z
meson setup build --prefix /my/install/prefix
cd build
meson compile
meson test
meson install
仔细检查meson setup的输出,确保找到了所需的依赖项。可以通过添加参数到meson setup来修改构建配置。
- 使用
-Dnsgif=false之类的标志来开启或关闭libvips选项,查看meson_options.txt获取所有构建选项。 - 使用
-Dmagick=disabled之类的标志来开启或关闭libvips的依赖,查看meson_options.txt和下面的列表获取所有libvips依赖。
其他选项包括:
- 在Debian系统上,如果不想在库路径中加入架构名称,可能需要添加
--libdir lib。 - 为了静态构建,可以添加
--default-library static。 - 使用例如
CC=clang CXX=clang++ meson setup ...来更改编译器。 - 可以创建多个
build-dir,使用不同的名称,例如为发布和调试各创建一个。
安装后,可以运行pytest在libvips基目录下进行更全面的测试。
2. 项目的使用说明
libvips支持多种编程语言绑定,包括C、C++、Python、Ruby、PHP、C#/.NET、Go、Lua、Crystal和Elixir。用户可以通过以下方式使用libvips:
- 命令行界面:libvips提供了命令行界面,用户可以直接通过命令行执行图像处理操作。
- 编程语言绑定:用户可以选择支持的语言绑定,使用libvips提供的API进行图像处理。
3. 项目API使用文档
libvips提供了大约300个操作,包括算术、直方图、卷积、形态学操作、频率滤波、颜色处理、重采样、统计等。它支持多种图像格式,包括JPEG、JPEG2000、JPEG-XL、TIFF、PNG、WebP、HEIC、AVIF、FITS、Matlab、OpenEXR、PDF、SVG、HDR、PPM/PGM/PFM、CSV、GIF、Analyze、NIfTI、DeepZoom和OpenSlide等。
具体API使用文档可以在libvips的官方网站上找到。
4. 项目安装方式
安装libvips的方式如下:
4.1 使用包管理器
对于大多数类Unix操作系统,可以使用系统包管理器安装libvips。
4.2 下载预编译二进制文件
对于Windows系统,可以从libvips的发布页面下载预编译的二进制文件。
4.3 从源代码构建
按照上述1. 安装指南中1.3. 从源代码构建部分的说明进行操作。确保安装所有必需的依赖项,然后使用Meson构建系统进行编译和安装。
以上是libvips图像处理库的技术文档,希望对您使用libvips有所帮助。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00