JVM-Sandbox-Repeater中Lambda表达式操作MyBatis时Mock数据返回异常问题解析
问题背景
在使用JVM-Sandbox-Repeater进行流量回放时,开发人员遇到了一个特殊场景:当代码中使用Lambda表达式结合PageHelper进行MyBatis分页查询时,虽然MyBatis的Mock数据配置成功,但实际流程却中断,Mock数据未能正常返回。
典型代码示例如下:
PageHelper.startPage(1,15).doSelectPageInfo(() -> dao.select(arg1,arg2));
问题根源分析
经过深入排查,发现问题的根本原因在于PageHelper的实现机制。PageHelper内部使用了线程变量(ThreadLocal)来存储分页信息,包括总记录数(total)等关键数据。在流量回放过程中,虽然MyBatis的DAO层方法被成功Mock,但PageHelper相关的线程变量未被正确初始化,导致total值为0,进而使得整个分页流程提前终止。
解决方案
要解决这个问题,需要在JVM-Sandbox-Repeater中增加对PageHelper关键方法的录制和回放支持。具体实现方案如下:
- 创建一个专门的PageHelper插件,用于拦截和录制PageHelper的核心方法调用
- 重点捕获影响分页结果的关键方法,如getTotal、getPageNum等
- 在回放阶段正确恢复这些方法的返回值
实现代码示例:
@MetaInfServices(InvokePlugin.class)
public class PageHelperPlugin extends AbstractInvokePluginAdapter {
@Override
protected List<EnhanceModel> getEnhanceModelList() {
EnhanceModel enhanceModel = EnhanceModel.builder()
.classPattern("com.github.pagehelper.Page")
.methodPatterns(
MethodPattern.transform("getTotal", "getCountColumn",
"getDialectClass", "getEndRow", "getOrderBy",
"getPageNum", "getPages", "getPageSize",
"getPageSizeZero", "getReasonable", "getStartRow"))
.watchTypes(EnhanceModel.RECORD_EVENT_TYPE).build();
return CollectionUtil.newArrayList(enhanceModel);
}
@Override
protected InvocationProcessor getInvocationProcessor() {
return new PageHelperInvocationProcessor(getType());
}
@Override
public InvokeType getType() {
return InvokeType.PAGE_HELPER;
}
@Override
public boolean isEntrance() {
return false;
}
}
技术要点
-
线程变量问题:在流量录制和回放过程中,需要特别注意线程局部变量(ThreadLocal)的处理,这类变量不会自动跨线程传递。
-
Lambda表达式处理:Lambda表达式在JVM层面会被编译为匿名类,JVM-Sandbox-Repeater需要能够正确处理这种调用方式。
-
分页组件集成:对于常用的第三方组件如PageHelper,需要专门适配以确保其内部状态能够被正确录制和回放。
最佳实践建议
-
在项目中使用JVM-Sandbox-Repeater时,应提前识别所有使用的第三方组件,特别是那些依赖线程变量的组件。
-
对于复杂的调用链,特别是涉及Lambda表达式和函数式编程的场景,建议进行充分的测试验证。
-
可以建立常见组件的插件库,如MyBatis、PageHelper等,便于团队共享使用。
-
在录制阶段,注意检查是否完整捕获了所有必要的调用信息,包括看似"不重要"的getter方法。
通过以上分析和解决方案,我们成功解决了Lambda表达式结合PageHelper进行MyBatis操作时Mock数据无法正常返回的问题。这为类似场景下的流量回放提供了可靠的技术保障。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00