Wazuh集群架构中Agent数据同步机制的优化实践
背景与问题分析
在Wazuh安全监控平台的集群架构中,Agent节点与Master节点之间的数据同步是保证系统实时性和一致性的关键机制。当前实现中,Worker节点每10秒会向Master节点同步一次Agent信息,这一过程由Agent通过1514端口发送的健康检查(healthcheck)消息触发。
现有机制存在一个明显的性能瓶颈:当Agent的last_keep_alive时间戳更新时,系统会触发完整Agent数据记录的同步。这意味着即使只有这一个字段发生变化,Worker节点也会将Agent的所有元数据(包括操作系统信息、分组标签、配置内容等静态数据)传输到Master节点。在大型部署环境中,这种设计会导致:
- 不必要的网络带宽消耗
- 额外的CPU处理开销
- 频繁的存储I/O操作
- 整体集群性能下降
技术原理与优化方案
现有同步机制分析
当前系统使用sync_status字段作为同步触发器,该字段为字符串类型,但仅用作二元标志(同步请求/已同步)。当remoted组件检测到Agent信息变更时,会更新本地SQLite数据库(wazuh-db)并设置此字段。
优化设计思路
我们提出了一种细粒度的同步状态分类方案,充分利用现有的sync_status字段(无需修改数据库schema),将其扩展为多状态指示器:
- 轻量级心跳同步 (
syncreq_keepalive):仅同步last_keepalive时间戳 - 状态变更同步 (
syncreq_status):同步连接状态相关字段(包括connection_status、disconnection_time和status_code) - 全量数据同步 (
syncreq):在Agent启动或重新注册时同步完整元数据 - 无需同步 (
synced):保持现有含义
这种设计的关键优势在于:
- 完全向后兼容
- 无需数据库迁移
- 保持现有接口不变
- 仅需修改
remoted组件的业务逻辑
实现细节与状态机
状态转换逻辑
- 初始状态:Agent注册后设为
syncreq_status,同步基本连接信息 - 首次心跳:升级为
syncreq,触发全量同步确保Master拥有完整数据 - 常规心跳:降级为
syncreq_keepalive,仅传输时间戳 - 异常断开:升级为
syncreq_status,同步异常状态信息 - 版本不匹配:特殊情况下设为
syncreq_status
核心组件修改
remoted组件的主要修改点包括:
- 增强状态检测逻辑,准确识别变更类型
- 根据变更范围智能设置
sync_status值 - 保持与wazuh-db的现有交互方式
集群守护进程(daemon)无需修改,因为它已经通过wazuh-db接口获取Agent数据,能够自然地处理不同同步级别的请求。
性能优化效果
通过实际测试,我们观察到以下改进:
- 网络负载降低:常规心跳场景下传输数据量减少90%以上
- 处理延迟下降:Master节点处理同步请求的时间缩短
- 资源利用率优化:CPU和I/O负载显著降低
测试数据显示,对于一个包含10个Agent的环境,混合状态下的同步响应仅包含必要的字段,例如:
{
"id": 1,
"last_keepalive": 1745875894
}
而全量同步仅在必要时触发,包含完整的Agent元数据。
实施建议与注意事项
- 升级兼容性:该优化完全兼容现有部署,无需特殊迁移步骤
- 监控指标:建议新增同步类型统计指标,便于性能分析
- 异常处理:保持对未知
sync_status值的容错能力 - 配置调优:可根据网络环境调整同步间隔等参数
总结
Wazuh集群架构中Agent数据同步机制的这项优化,通过引入细粒度的同步状态分类,显著提升了大规模部署下的系统性能。这种设计既保持了架构的简洁性,又解决了实际运行中的性能瓶颈,体现了"按需同步"的优化理念。该方案已在4.11版本中得到验证,可作为类似分布式系统数据同步优化的参考范例。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00