Prometheus 3.0 版本中非兼容性指标抓取问题的解决方案
问题背景
在Prometheus监控系统中,从2.55.1版本升级到3.0.0版本后,用户遇到了无法抓取某些应用指标的问题。具体表现为Prometheus日志中出现了"non-compliant scrape target sending blank Content-Type"的错误信息,导致监控数据无法正常收集。
技术原理分析
Prometheus 3.0.0版本引入了一个重要的变更:对指标抓取协议进行了更严格的验证。根据Prometheus官方规范,任何暴露指标的端点都应该在HTTP响应头中包含正确的Content-Type字段,格式应为"text/plain; version=0.0.4"。
在3.0版本之前,Prometheus对Content-Type头的要求较为宽松,即使端点没有正确设置这个头,Prometheus也能尝试解析指标数据。但在3.0版本中,这一行为被修改为严格执行规范要求,目的是提高系统的健壮性和一致性。
问题表现
当Prometheus尝试抓取不符合规范的端点时,会出现以下典型症状:
- 在Prometheus Web UI中显示错误信息:"Error scraping target: non-compliant scrape target sending blank Content-Type"
- 日志中记录类似内容:"fallback_media_type="" err="non-compliant scrape target sending blank Content-Type and no fallback_scrape_protocol specified for target""
- 指标数据无法被正常收集
解决方案
对于这个问题,有两种主要的解决途径:
1. 修改应用端点的实现(推荐方案)
最理想的解决方案是修改暴露指标的应用程序,使其在HTTP响应中正确设置Content-Type头。对于Prometheus格式的指标,应该返回:
Content-Type: text/plain; version=0.0.4
这是符合Prometheus官方规范的实现方式,能够确保与所有版本的Prometheus兼容。
2. 配置Prometheus的fallback_scrape_protocol(临时方案)
如果暂时无法修改应用程序,可以在Prometheus的配置中为这些目标添加fallback_scrape_protocol设置。具体配置方法如下:
scrape_configs:
- job_name: 'your-job-name'
fallback_scrape_protocol: PrometheusText0.0.4
# 其他配置...
这个配置告诉Prometheus,当遇到没有Content-Type头的目标时,默认使用Prometheus文本格式0.0.4版本来解析指标数据。
实施建议
-
短期方案:对于生产环境中急需解决的问题,可以先使用fallback_scrape_protocol配置作为临时解决方案,确保监控不中断。
-
长期方案:联系相关应用的维护团队,推动他们按照Prometheus规范实现正确的Content-Type头,这是最规范的解决方案。
-
测试验证:在实施任何变更后,都应该使用curl等工具验证端点的响应头是否正确,例如:
curl -vs http://target:port/metrics
总结
Prometheus 3.0版本对指标抓取协议的严格校验是一个积极的改进,虽然短期内可能带来一些兼容性问题,但从长远看有助于提高整个监控生态的标准化程度。作为用户,我们既可以通过配置调整来适应这一变化,更应该推动应用开发者遵循Prometheus的规范实现。
对于使用Helm Chart部署Prometheus的用户,可以通过values.yaml中的extraScrapeConfigs字段来添加fallback_scrape_protocol配置,或者自定义scrape_configs部分来覆盖默认配置。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00