如何在Polly V8中抑制Execution Attempt日志
背景介绍
Polly是一个流行的.NET弹性库,用于处理瞬态故障和构建弹性应用程序。在Polly V8版本中,ResiliencePipelineBuilder引入了新的日志记录机制,其中包含了一些默认的日志输出,如"Execution attempt"日志。这些日志在某些情况下可能会造成日志系统的冗余输出。
问题现象
当使用ResiliencePipelineBuilder构建重试策略时,即使操作成功执行且无需重试,系统仍会记录类似以下的日志信息:
Execution attempt. Source: 'screenshot-stream-with-retries/(null)/Retry', Operation Key: 'null', Result: 'System.IO.MemoryStream', Handled: 'false', Attempt: '0', Execution Time: '730.3186'
这种日志在成功执行的场景下可能显得多余,增加了日志系统的噪声。
解决方案
方法一:调整Polly日志级别
最直接的解决方案是通过调整Polly的日志级别来控制日志输出。可以将Polly相关的日志级别设置为Warning或更高,这样就不会记录信息级别的Execution Attempt日志。
在ASP.NET Core应用中,可以在appsettings.json中配置:
{
"Logging": {
"LogLevel": {
"Polly": "Warning"
}
}
}
或者在Program.cs中使用代码配置:
builder.Logging.AddFilter("Polly", LogLevel.Warning);
方法二:使用日志过滤器
如果需要更精细的控制,可以创建自定义的日志过滤器来排除特定的日志消息。例如:
builder.Logging.AddFilter((provider, category, logLevel) =>
{
if (category.StartsWith("Polly") &&
logLevel == LogLevel.Information &&
message.Contains("Execution attempt"))
{
return false;
}
return true;
});
方法三:自定义日志记录器
对于更复杂的场景,可以实现自定义的ILoggerProvider和ILogger,在记录日志前进行检查和过滤。
最佳实践建议
-
生产环境:建议将Polly的日志级别设置为Warning或Error,除非特别需要调试弹性策略的执行细节。
-
开发环境:可以保留Info级别的日志,便于调试和验证弹性策略的正确性。
-
关键操作:对于特别重要的操作,可以考虑在OnRetry回调中记录自定义的详细日志,而不是依赖默认的Execution Attempt日志。
-
性能考虑:频繁的日志记录可能影响性能,特别是在高吞吐量系统中,应谨慎选择日志级别。
总结
Polly V8的ResiliencePipelineBuilder提供了强大的弹性策略构建能力,同时也带来了更详细的日志记录功能。通过合理配置日志级别或使用自定义过滤器,可以有效地控制日志输出,保持日志系统的整洁和高效。根据应用场景选择合适的日志级别配置,既能满足监控需求,又能避免日志过载。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00