MLX-Swift 0.23.1版本发布:深度整合与性能优化
2025-07-05 02:06:34作者:廉彬冶Miranda
MLX-Swift是苹果生态系统中一个重要的机器学习框架,它为Swift开发者提供了高效、易用的机器学习工具。作为MLX框架的Swift语言绑定,MLX-Swift让开发者能够在macOS和iOS平台上轻松构建和部署机器学习模型。
核心更新内容
MLX版本升级至0.23.1
本次发布的0.23.1版本将底层MLX引擎升级到了最新版本,这一升级带来了多项性能改进和新特性。值得注意的是,这次升级实际上包含了从0.21.3到0.23.1的多个版本跨度,意味着开发者可以一次性获得大量功能增强和性能提升。
模块重构与整合
本次更新对框架结构进行了重要调整,将原先分散的多个功能模块整合到主模块中:
- MLXFast:原先负责高性能计算的模块
- MLXFFT:快速傅里叶变换相关功能
- MLXRandom:随机数生成功能
- MLXLinalg:线性代数运算模块
这些模块虽然已被整合到主模块中,但框架保持了良好的向后兼容性。开发者仍然可以使用原有的导入方式,这为现有项目的迁移提供了便利。
技术细节解析
新增功能与改进
- 张量操作增强:新增了
at系列函数,提供了更灵活的张量元素访问方式 - 数组操作扩展:增加了
roll函数,完善了数组循环移位功能 - 层组合支持:改进了层的组合能力,特别是对LoRA等特殊层的支持
性能优化
通过模块整合,框架减少了模块间的调用开销,提升了整体性能。同时,底层MLX引擎的升级也带来了显著的性能提升,特别是在矩阵运算和神经网络计算方面。
开发者影响与迁移建议
对于现有项目,开发者无需立即进行大规模修改,因为框架保持了良好的向后兼容性。但建议新项目直接使用整合后的模块结构,以获得更好的性能和更简洁的代码结构。
对于需要特殊功能(如FFT或高级随机数生成)的开发者,现在可以直接通过主模块访问这些功能,减少了额外的导入语句。
未来展望
这次模块整合标志着MLX-Swift框架的成熟度提升,为未来的功能扩展奠定了更坚实的基础。开发者可以期待更统一的API设计和更高效的性能表现。
随着苹果生态系统中机器学习需求的增长,MLX-Swift有望成为Swift开发者进行机器学习开发的首选工具之一。框架的持续优化和功能增强将为开发者带来更强大的工具和更流畅的开发体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350