Longhorn Engine 使用教程
1. 项目介绍
Longhorn Engine 是一个轻量级的块设备存储控制器,能够将数据存储在多个副本中。它类似于网络 RAID 控制器,副本由 Linux 稀疏文件支持,并支持使用差异磁盘进行高效的快照。副本功能类似于网络磁盘,支持通过网络协议进行读写操作。前端(目前仅支持 Open-iSCSI/tgt)是一个内核驱动程序,将 Longhorn 块设备(映射到 /dev/longhorn/vol-name)上的读写操作转换为用户级别的网络请求。每个 Longhorn 块设备都由其专用的控制器支持,控制器同步复制写操作到所有副本,检测故障副本并重建副本,协调快照和备份操作。控制器和副本被打包为 Docker 容器。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的主机已经安装了 Docker。可以通过以下命令检查 Docker 是否安装:
docker info
2.2 启动单个副本的控制器
最简单的尝试 Longhorn Engine 的方法是启动一个带有单个副本的控制器。运行以下命令:
docker run --privileged -v /dev:/host/dev -v /proc:/host/proc -v /volume \
longhornio/longhorn-engine:master-head launch-simple-longhorn vol-name 10g tgt-blockdev
这将创建一个设备 /dev/longhorn/vol-name。
2.3 启动多个副本的控制器
要启动带有多个副本的 Longhorn Engine,你需要在副本容器和控制器容器之间设置网络。以下是使用 Docker 网络功能进行演示的步骤:
-
创建一个名为
longhorn-net的网络:docker network create --subnet=172.18.0.0/16 longhorn-net -
将两个副本添加到网络中,并将其 IP 设置为 172.18.0.2 和 172.18.0.3:
docker run --net longhorn-net --ip 172.18.0.2 -v /volume \ longhornio/longhorn-engine longhorn replica --listen 172.18.0.2:9502 --size 10g /volume docker run --net longhorn-net --ip 172.18.0.3 -v /volume \ longhornio/longhorn-engine longhorn replica --listen 172.18.0.3:9502 --size 10g /volume -
启动控制器(以 tgt-blockdev 为例):
docker run --net longhorn-net --privileged -v /dev:/host/dev -v /proc:/host/proc \ longhornio/longhorn-engine longhorn controller --frontend tgt-blockdev \ --replica tcp://172.18.0.2:9502 --replica tcp://172.18.0.3:9502 vol-name
现在你将拥有设备 /dev/longhorn/vol-name。
3. 应用案例和最佳实践
3.1 应用案例
Longhorn Engine 适用于需要高可用性和数据冗余的场景,例如:
- Kubernetes 集群:在 Kubernetes 集群中,Longhorn Engine 可以作为持久存储解决方案,确保数据在多个节点之间同步和备份。
- 分布式数据库:在分布式数据库系统中,Longhorn Engine 可以提供可靠的存储层,确保数据在多个副本之间的一致性。
3.2 最佳实践
- 副本数量:建议至少使用三个副本以确保数据的可靠性和高可用性。
- 网络配置:确保副本和控制器之间的网络连接稳定,避免网络延迟和丢包。
- 监控和日志:定期监控 Longhorn Engine 的运行状态,并记录日志以便故障排查。
4. 典型生态项目
Longhorn Engine 通常与其他开源项目结合使用,以构建完整的存储解决方案。以下是一些典型的生态项目:
- Longhorn:Longhorn 是一个基于 Kubernetes 的分布式块存储系统,使用 Longhorn Engine 作为其存储控制器。
- Rancher:Rancher 是一个 Kubernetes 管理平台,支持 Longhorn 作为其存储选项之一。
- OpenEBS:OpenEBS 是一个开源的容器附加存储解决方案,可以与 Longhorn Engine 结合使用,提供更丰富的存储功能。
通过结合这些生态项目,用户可以构建出更加强大和灵活的存储解决方案,满足不同场景的需求。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00