首页
/ LMDeploy项目中的GPU显存优化技巧:解决A10与A800差异问题

LMDeploy项目中的GPU显存优化技巧:解决A10与A800差异问题

2025-06-04 05:00:56作者:俞予舒Fleming

问题背景

在使用LMDeploy项目进行大模型推理时,开发者可能会遇到一个典型问题:相同的代码和运行环境,在不同型号的GPU上表现迥异。例如,在A800显卡上运行正常的模型,在A10显卡上却会出现内存分配错误。

错误现象分析

当在A10显卡上运行InternVL2_5-8B模型时,系统会抛出"pointer_mapping_ does not have information of ptr"的错误,并伴随内存分配失败的提示。值得注意的是,在转换模型为turbomind格式的过程中,系统会显示转换进度条,而这一现象在A800显卡上并不出现。

根本原因

经过技术分析,这个问题本质上是由于GPU显存不足导致的。A10显卡的显存容量通常小于A800显卡,当模型进行预热(warm-up)阶段时,系统尝试分配的内存超出了A10显卡的实际显存容量,从而触发了内存分配错误。

解决方案

针对这一问题,LMDeploy项目提供了两个关键的配置参数可供调整:

  1. max_prefill_token_num:控制预填充阶段处理的最大token数量
  2. cache_max_entry_count:限制缓存中的最大条目数

通过适当降低这两个参数的数值,可以有效减少模型运行时的显存占用,使其能够在显存较小的A10显卡上正常运行。

技术建议

对于使用不同型号GPU进行模型部署的开发者,建议:

  1. 在部署前了解目标GPU的显存规格
  2. 根据GPU显存容量合理配置模型参数
  3. 对于显存较小的GPU,优先考虑降低max_prefill_token_num参数
  4. 在模型转换阶段监控显存使用情况

总结

GPU显存管理是大模型部署中的关键环节。通过合理配置LMDeploy的相关参数,可以确保模型在不同规格的硬件平台上稳定运行。这一案例也提醒开发者,在模型部署时需要充分考虑目标硬件的实际性能参数,做好相应的优化调整。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8