基于Sentence Transformers的NFCorpus数据集微调技术解析
2025-05-13 06:54:37作者:邬祺芯Juliet
背景介绍
在信息检索领域,Sentence Transformers项目提供了强大的文本嵌入能力。本文将深入探讨如何针对医学数据集NFCorpus进行模型微调的技术细节。NFCorpus是一个来自BeIR的医学数据集,每个查询平均对应38.2个相关文档,这种一对多的特性给模型训练带来了独特挑战。
技术方案设计
双编码器与交叉编码器协同架构
在实现方案中,我们采用了双编码器(Bi-Encoder)和交叉编码器(Cross-Encoder)协同工作的架构:
- 双编码器阶段:使用Sentence Transformer模型将所有文档编码为向量,并构建Faiss索引
- 检索阶段:对每个查询,通过Faiss检索出最相关的10个文档
- 重排序阶段:使用交叉编码器对查询-文档对进行精细评分
- 分数归一化:通过sigmoid函数将交叉编码器的输出归一化为0-1之间的相似度分数
这种架构结合了双编码器的高效检索能力和交叉编码器的精确评分优势,特别适合处理NFCorpus这种一对多的数据集。
训练策略优化
损失函数选择
在模型训练过程中,我们主要考虑了两种损失函数:
- 余弦相似度损失(CosineSimilarityLoss):直接优化模型输出的嵌入向量与目标相似度分数之间的差异
- CoSENTLoss:作为余弦相似度损失的改进版本,在某些场景下表现更优
多负例排序损失(MultipleNegativesRankingLoss)
这是一种更先进的训练策略,其核心思想是:
- 仅需要正例对(查询-相关文档)
- 自动将同一批次中的其他样本视为负例
- 配合NoDuplicatesDataLoader使用效果更佳
- 批次大小对性能有显著影响,更大的批次通常带来更好的效果
训练过程中的关键发现
在实验过程中,我们观察到一个重要现象:当训练超过10个epoch后,模型性能开始持续下降。经过分析,这主要与学习率调度机制有关:
- 标准的NLP模型训练通常采用逐渐降低学习率的策略
- 前10个epoch结束时,学习率已降至接近0
- 如果在此基础上继续训练,学习率会重新升高,导致模型参数剧烈变化
- 解决方案是直接从基础模型开始完整训练所需的总epoch数
实践建议
对于希望在NFCorpus数据集上微调模型的实践者,我们建议:
- 优先考虑使用MultipleNegativesRankingLoss配合NoDuplicatesDataLoader
- 尝试CachedMultipleNegativesRankingLoss以获得更大批次的训练优势
- 对于需要精确相似度分数的场景,可以结合使用CoSENTLoss
- 训练时直接从基础模型开始,规划好总epoch数,避免中断后继续训练
- 注意交叉编码器仅用于推理阶段的精细排序,不适合直接用于训练
通过合理运用这些技术,可以显著提升模型在医学信息检索任务中的表现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328