基于Sentence Transformers的NFCorpus数据集微调技术解析
2025-05-13 02:51:49作者:邬祺芯Juliet
背景介绍
在信息检索领域,Sentence Transformers项目提供了强大的文本嵌入能力。本文将深入探讨如何针对医学数据集NFCorpus进行模型微调的技术细节。NFCorpus是一个来自BeIR的医学数据集,每个查询平均对应38.2个相关文档,这种一对多的特性给模型训练带来了独特挑战。
技术方案设计
双编码器与交叉编码器协同架构
在实现方案中,我们采用了双编码器(Bi-Encoder)和交叉编码器(Cross-Encoder)协同工作的架构:
- 双编码器阶段:使用Sentence Transformer模型将所有文档编码为向量,并构建Faiss索引
- 检索阶段:对每个查询,通过Faiss检索出最相关的10个文档
- 重排序阶段:使用交叉编码器对查询-文档对进行精细评分
- 分数归一化:通过sigmoid函数将交叉编码器的输出归一化为0-1之间的相似度分数
这种架构结合了双编码器的高效检索能力和交叉编码器的精确评分优势,特别适合处理NFCorpus这种一对多的数据集。
训练策略优化
损失函数选择
在模型训练过程中,我们主要考虑了两种损失函数:
- 余弦相似度损失(CosineSimilarityLoss):直接优化模型输出的嵌入向量与目标相似度分数之间的差异
- CoSENTLoss:作为余弦相似度损失的改进版本,在某些场景下表现更优
多负例排序损失(MultipleNegativesRankingLoss)
这是一种更先进的训练策略,其核心思想是:
- 仅需要正例对(查询-相关文档)
- 自动将同一批次中的其他样本视为负例
- 配合NoDuplicatesDataLoader使用效果更佳
- 批次大小对性能有显著影响,更大的批次通常带来更好的效果
训练过程中的关键发现
在实验过程中,我们观察到一个重要现象:当训练超过10个epoch后,模型性能开始持续下降。经过分析,这主要与学习率调度机制有关:
- 标准的NLP模型训练通常采用逐渐降低学习率的策略
- 前10个epoch结束时,学习率已降至接近0
- 如果在此基础上继续训练,学习率会重新升高,导致模型参数剧烈变化
- 解决方案是直接从基础模型开始完整训练所需的总epoch数
实践建议
对于希望在NFCorpus数据集上微调模型的实践者,我们建议:
- 优先考虑使用MultipleNegativesRankingLoss配合NoDuplicatesDataLoader
- 尝试CachedMultipleNegativesRankingLoss以获得更大批次的训练优势
- 对于需要精确相似度分数的场景,可以结合使用CoSENTLoss
- 训练时直接从基础模型开始,规划好总epoch数,避免中断后继续训练
- 注意交叉编码器仅用于推理阶段的精细排序,不适合直接用于训练
通过合理运用这些技术,可以显著提升模型在医学信息检索任务中的表现。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K