LLaMA-Factory项目中LLaMA-Pro模型的微调技术解析
2025-05-01 02:57:30作者:瞿蔚英Wynne
LLaMA-Factory项目为LLM模型训练提供了强大的支持框架,其中对LLaMA-Pro模型的微调处理尤为值得关注。LLaMA-Pro模型通过插入新的Transformer块来扩展原始LLaMA模型的能力,这种架构扩展方式为模型性能提升提供了新的可能性。
LLaMA-Pro模型架构特点
LLaMA-Pro模型采用了一种创新的架构扩展方法,将新增的Transformer块均匀地插入到原始模型的各个块之间。这种设计既保持了原始模型的层次结构特征,又通过新增层增强了模型的表达能力。具体实现上,扩展层不是简单地附加在模型末尾,而是分布在网络的不同深度位置。
微调策略分析
项目提供了专门的微调配置参数来控制训练过程:
-
freeze_trainable_layers:该参数设置为8时,表示仅训练模型最后的8层。这种设计基于迁移学习的常见实践,即保持底层特征提取器不变,仅调整高层语义组合部分。
-
freeze_trainable_modules:设置为"all"时,会冻结所有可训练模块,除非被其他参数特别指定。
-
use_llama_pro:启用LLaMA-Pro模型的特殊处理逻辑。
扩展层训练机制
关于扩展层是否会被训练的问题,需要理解项目的实现细节。虽然扩展层是均匀插入的,但项目的微调逻辑会确保:
- 当指定训练最后N层时,系统会自动识别这些层,无论它们是原始层还是新增的扩展层
- 扩展层如果位于指定的可训练层范围内,同样会被纳入训练过程
- 项目的层数计算是基于整体模型深度,不区分原始层和扩展层
实践建议
对于希望使用LLaMA-Factory微调LLaMA-Pro模型的研究者,建议:
- 仔细规划扩展层的插入位置和数量,确保模型容量与任务复杂度匹配
- 根据计算资源合理设置训练层数,大模型全参数微调成本较高
- 可以尝试不同的层冻结策略,找到性能与效率的最佳平衡点
- 监控扩展层的梯度更新情况,确保其确实参与了训练过程
LLaMA-Factory的这种设计既保留了原始模型的预训练知识,又通过可控的微调方式让新增层能够有效学习,为模型扩展提供了灵活而高效的解决方案。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246