React Native Firebase 中 AppCheck 在 RN 0.77 版本的适配指南
问题背景
在 React Native 0.77 版本升级过程中,开发者在使用 React Native Firebase 的 AppCheck 模块时遇到了兼容性问题。主要症状表现为应用启动时出现错误提示:"The attestation provider DeviceCheckProvider is not supported on current platform and OS version",导致无法正常获取 token。
核心问题分析
这个问题源于 React Native 0.77 版本对 iOS 项目结构的重大变更,特别是 AppDelegate 文件的格式从 Objective-C(.m) 切换到了 Swift(.swift)。这种架构变化导致原有的 AppCheck 初始化方式不再适用。
解决方案详解
正确的 Swift 初始化方式
要在 Swift 版本的 AppDelegate 中正确初始化 AppCheck,需要遵循以下步骤:
- 首先在文件顶部添加必要的导入语句:
import RNFBAppCheck
- 在
application(_:didFinishLaunchingWithOptions:)方法中,在调用FirebaseApp.configure()之前添加初始化代码:
RNFBAppCheckModule.sharedInstance()
完整示例如下:
import UIKit
import RNFBAppCheck
import FirebaseCore
import React
import React_RCTAppDelegate
import ReactAppDependencyProvider
@main
class AppDelegate: RCTAppDelegate {
override func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions: [UIApplication.LaunchOptionsKey : Any]? = nil) -> Bool {
RNFBAppCheckModule.sharedInstance()
FirebaseApp.configure()
self.moduleName = "YourAppName"
self.dependencyProvider = RCTAppDependencyProvider()
// 其他初始化代码...
return super.application(application, didFinishLaunchingWithOptions: launchOptions)
}
}
注意事项
-
初始化顺序:必须确保
RNFBAppCheckModule.sharedInstance()在FirebaseApp.configure()之前调用,这是关键所在。 -
模块化 API:目前 React Native Firebase 的模块化 API 对 AppCheck 的支持尚不完善,特别是
ReactNativeFirebaseAppCheckProvider对象的获取方式还需要进一步优化。 -
Expo 兼容性:对于使用 Expo 的开发者,目前社区版插件尚未适配这一变更,需要等待社区更新或自行实现类似 app 插件的适配方案。
技术原理
这种变更背后的技术原因是 React Native 0.77 对 iOS 原生模块初始化流程的改进。Swift 版本的 AppDelegate 提供了更现代的编程接口,但也要求模块以不同的方式注册和初始化。AppCheck 作为 Firebase 的安全验证层,需要在 Firebase 核心初始化之前完成自身的配置,以确保所有后续的 Firebase 操作都能通过安全检查。
最佳实践建议
-
在升级到 React Native 0.77 时,应该全面检查所有 Firebase 模块的初始化代码。
-
对于混合使用 Objective-C 和 Swift 的项目,要特别注意模块间的兼容性问题。
-
建议在升级前先在开发环境充分测试 AppCheck 功能,确保令牌获取和验证流程正常工作。
-
关注 React Native Firebase 官方文档的更新,及时获取最新的适配指南。
通过遵循上述解决方案,开发者可以顺利解决 React Native 0.77 下 AppCheck 模块的兼容性问题,确保应用的安全验证功能正常运行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01