AWS Deep Learning Containers 发布 PyTorch 2.4.0 推理容器镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,能够帮助开发者快速部署深度学习工作负载。这些容器镜像支持多种深度学习框架,包括PyTorch、TensorFlow等,并且针对CPU和GPU环境进行了专门优化。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.4.0版本的推理容器镜像更新。这次更新为开发者提供了基于Ubuntu 22.04操作系统、Python 3.11环境的PyTorch 2.4.0推理容器,支持CPU和CUDA 12.4 GPU加速两种计算环境。
容器镜像特性
本次发布的PyTorch推理容器镜像具有以下主要特性:
-
PyTorch 2.4.0支持:提供了最新的PyTorch 2.4.0框架,包含最新的性能优化和功能改进。
-
Python 3.11环境:基于Python 3.11构建,能够利用最新Python版本的语言特性和性能提升。
-
Ubuntu 22.04基础:使用Ubuntu 22.04 LTS作为基础操作系统,提供稳定的系统环境。
-
CUDA 12.4支持:GPU版本容器支持NVIDIA CUDA 12.4,能够充分利用最新GPU硬件的计算能力。
-
预装常用库:容器中预装了常用的数据处理和机器学习库,如NumPy、Pandas、Scikit-learn等,方便开发者直接使用。
容器镜像内容
CPU版本容器
CPU版本的容器镜像包含了PyTorch 2.4.0的CPU实现,适合在没有GPU加速的环境下运行推理任务。主要预装的Python包包括:
- PyTorch核心库:torch 2.4.0
- 计算机视觉库:torchvision 0.19.0、opencv-python 4.10.0.84
- 数据处理库:numpy 2.1.2、pandas 2.2.3
- 机器学习工具:scikit-learn 1.5.2、scipy 1.14.1
- 模型服务工具:torchserve 0.12.0、torch-model-archiver 0.12.0
GPU版本容器
GPU版本的容器镜像针对CUDA 12.4进行了优化,包含了PyTorch的GPU加速实现。除了包含CPU版本的所有功能外,还额外支持:
- CUDA 12.4相关库:libcublas-12-4、libcudnn9-cuda-12等
- GPU加速的PyTorch实现:torch 2.4.0+cu124
- GPU加速的torchvision:0.19.0+cu124
- GPU加速的torchaudio:2.4.0+cu124
- MPI支持:mpi4py 4.0.1
使用场景
这些预构建的容器镜像特别适合以下场景:
-
快速部署PyTorch推理服务:开发者可以直接使用这些容器快速部署PyTorch模型推理服务,无需花费时间配置环境和解决依赖问题。
-
SageMaker服务集成:这些容器针对AWS SageMaker服务进行了优化,可以无缝集成到SageMaker的模型部署流程中。
-
一致性开发环境:团队可以使用相同的容器镜像确保开发、测试和生产环境的一致性,避免"在我机器上能运行"的问题。
-
性能优化环境:AWS已经对这些容器进行了性能优化,开发者可以直接获得经过调优的PyTorch运行环境。
技术细节
从技术角度看,这些容器镜像的构建考虑了多个方面的优化:
-
系统级优化:基于Ubuntu 22.04 LTS,包含了最新的系统库和安全更新。
-
Python环境优化:使用Python 3.11,相比旧版本有显著的性能提升。
-
PyTorch特定优化:针对PyTorch 2.4.0的特性进行了配置优化,确保最佳性能。
-
CUDA支持:GPU版本精确匹配CUDA 12.4和对应的cuDNN版本,确保GPU计算的高效稳定。
-
依赖管理:精心选择各个Python包的版本,确保兼容性和稳定性。
总结
AWS Deep Learning Containers项目发布的PyTorch 2.4.0推理容器镜像为开发者提供了开箱即用的深度学习推理环境。这些容器经过AWS的优化和测试,能够帮助开发者快速部署PyTorch模型,专注于模型开发和业务逻辑,而不必花费大量时间在环境配置上。无论是CPU还是GPU环境,这些容器都提供了经过优化的PyTorch运行环境,是部署PyTorch推理服务的理想选择。
对于需要在AWS云上部署PyTorch模型的团队来说,这些预构建的容器镜像可以显著降低运维复杂度,提高部署效率,同时确保环境的稳定性和性能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00