增量式Transformer结构增强图像修复——ZITS
随着深度学习的发展,图像修复技术已经取得了显著的进步。其中,【Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding】(ZITS)项目是一个创新的解决方案,它将Transformer结构与图像修复相结合,提供了一种增量式的方法来处理图像中的损坏部分。
项目介绍
ZITS是由赵巧乐、曹晨杰和傅岩伟合作开发的一个开源项目,旨在改善传统图像修复方法的性能。该项目利用了Transformer的强大力量,结合特定的Masking Positional Encoding,能够有效地恢复图像中的结构细节,并填充丢失的纹理信息。其独特之处在于引入了一个逐步的修复过程,先进行低分辨率结构恢复,再通过简单的CNN上采样边缘和线图,最后利用ZeroRA在特征转换单元中恢复纹理。
项目技术分析
ZITS的核心是它的增量式Transformer架构。首先,TSR模型用于低分辨率下的结构恢复,然后一个基于CNN的上采样器用于放大边框和线条图。接着,上采样的草图空间被编码并添加到FTR(特征转换单元)中,通过ZeroRA实现高质量的纹理恢复。这一过程不仅提高了结构恢复的精度,还优化了纹理合成的质量。
应用场景
ZITS的技术适用于各种图像修复场景,包括因磨损、污渍或像素损失导致的图像损坏。此外,由于其对不规则和复杂遮罩的良好处理能力,它特别适合于自然图像和复杂场景的修复。例如,在历史资料保护、影视作品修复、社交媒体照片美化等领域都有广阔的应用前景。
项目特点
- 增量式修复:分步骤进行,先修复结构,再细化纹理,提高修复质量。
- Transformer结构:利用Transformer的强大注意力机制,捕捉全局上下文信息,提升修复效果。
- Masking Positional Encoding:针对遮罩位置定制编码,确保在掩模区域也能准确恢复细节。
- 全面的工具包:提供了训练代码、预训练模型和推理代码,方便研究者复现和扩展工作。
如果你正在寻找一种能够高效、精确地修复图像的解决方案,ZITS项目绝对值得尝试。这个项目不仅是技术上的突破,也是向更智能、更强大的图像处理工具迈进的一步。现在就加入,体验ZITS带来的视觉奇迹吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00