Apache DolphinScheduler 中停止 Spark on YARN 作业失败问题分析与解决
2025-05-19 23:42:52作者:何将鹤
问题背景
在使用 Apache DolphinScheduler 管理 Spark on YARN 作业时,用户发现通过 DolphinScheduler 停止作业的操作虽然将任务实例状态标记为"已终止",但实际上 Spark 作业仍在 YARN 上继续运行。手动执行生成的 .kill 文件却能成功终止作业。
问题现象
当通过 DolphinScheduler 界面停止 Spark 作业时,系统日志显示以下关键错误信息:
- 出现 ExitCodeException,退出码为 137
- 错误信息表明执行 yarn application -kill 命令失败
- 任务实例状态被标记为终止,但实际作业仍在运行
深入分析
执行环境差异
经过排查发现,DolphinScheduler 和手动执行 .kill 文件的主要区别在于:
- 执行用户不同:DolphinScheduler 通过租户用户执行,而手动执行使用的是当前会话用户
- 环境变量加载:DolphinScheduler 执行时会加载完整的环境配置
关键发现
通过 Arthas 工具调试发现,DolphinScheduler 在执行停止操作时尝试加载 /usr/hdp/current/hadoop/libexec/yarn-config.sh 文件,但该文件在系统中不存在。进一步调查发现这是由于 Hadoop 环境变量配置错误导致的。
根本原因
问题根源在于:
- 环境变量
HADOOP_HOME配置错误,指向了不存在的路径 - YARN 相关脚本依赖的环境变量未能正确加载
- 虽然手动执行 .kill 文件可以工作,但这是因为当前会话中已经包含了必要的环境变量
解决方案
- 修正 Hadoop 环境变量:确保
HADOOP_HOME指向正确的 Hadoop 安装目录 - 验证 yarn-config.sh 存在:确认
/usr/hdp/current/hadoop/libexec/yarn-config.sh文件存在且可读 - 检查权限配置:确保 DolphinScheduler 的租户用户有权限执行相关命令和访问所需文件
技术要点
- YARN 作业管理机制:Spark on YARN 作业的停止依赖于 YARN 的资源管理机制
- 环境变量重要性:Hadoop/YARN 相关命令执行依赖正确的环境变量配置
- 多用户执行环境:DolphinScheduler 的多租户特性可能导致环境变量加载与直接执行存在差异
最佳实践建议
- 在部署 DolphinScheduler 时,确保所有工作节点具有一致的 Hadoop 环境配置
- 定期验证关键脚本文件(如 yarn-config.sh)的存在和可执行性
- 对于生产环境,建议建立配置检查清单,包含所有必要的环境变量和文件路径验证
总结
这个问题展示了分布式任务调度系统中环境配置的重要性。通过本次排查,我们不仅解决了具体的作业停止问题,也加深了对 DolphinScheduler 与 YARN 集成机制的理解。正确的环境配置是保证调度系统稳定运行的基础,特别是在涉及多租户和复杂依赖的场景下。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178