Learning eBPF 项目教程
1. 项目目录结构及介绍
learning-ebpf 项目是一个用于学习 eBPF(Extended Berkeley Packet Filter)的示例代码集合。项目的目录结构如下:
learning-ebpf/
├── chapter1
├── chapter2
├── chapter3
├── chapter4
├── chapter5
├── chapter6
├── chapter7
├── chapter8
├── chapter9
├── chapter10
├── libbpf
├── .gitignore
├── .gitmodules
├── LICENSE
├── README.md
├── learning-ebpf-cover.png
└── learning-ebpf.yaml
目录介绍
-
chapter1 至 chapter10:每个目录对应书中的一个章节,包含该章节的示例代码。
- chapter1:介绍 eBPF 及其重要性。
- chapter2:eBPF 的“Hello World”示例,使用 BCC 框架。
- chapter3:eBPF 程序的剖析,包含 C 语言编写的 XDP 示例。
- chapter4:
bpf()系统调用的使用,更多 BCC 框架示例。 - chapter5:CO-RE、BTF 和 libbpf,libbpf 示例代码。
- chapter6:eBPF 验证器,通过修改代码触发验证器错误。
- chapter7:eBPF 程序和附件类型,不同 eBPF 程序类型的示例。
- chapter8:eBPF 用于网络,示例代码附着在网络栈的不同点。
- chapter9:eBPF 用于安全,即将推出。
- chapter10:eBPF 编程,探索各种 eBPF 库的示例。
-
libbpf:包含 libbpf 的子模块,用于构建 C 语言编写的 eBPF 示例。
-
.gitignore 和 .gitmodules:Git 配置文件。
-
LICENSE:项目许可证,采用 Apache-2.0 许可证。
-
README.md:项目的介绍和使用说明。
-
learning-ebpf-cover.png:项目封面图片。
-
learning-ebpf.yaml:Lima 配置文件,用于设置虚拟机环境。
2. 项目的启动文件介绍
项目的启动文件主要集中在各个章节的目录中,每个章节都包含相应的示例代码和启动脚本。以下是一些关键的启动文件:
2.1 章节启动文件
每个章节的目录中通常包含一个或多个启动文件,用于运行该章节的示例代码。例如:
- chapter2/hello_world.py:使用 BCC 框架的“Hello World”示例。
- chapter3/xdp_example.c:C 语言编写的 XDP 示例。
2.2 Lima 配置文件
learning-ebpf.yaml 是 Lima 虚拟机的配置文件,用于设置运行示例代码所需的环境。通过以下命令启动虚拟机:
limactl start learning-ebpf.yaml
limactl shell learning-ebpf
3. 项目的配置文件介绍
3.1 Lima 配置文件
learning-ebpf.yaml 是 Lima 虚拟机的配置文件,定义了虚拟机的操作系统、内核版本、所需软件包等信息。以下是配置文件的部分内容:
# learning-ebpf.yaml 部分内容
os: ubuntu
kernel: 5.15
packages:
- clang
- libbpf
- bpftool
3.2 libbpf 配置
libbpf/README.md 提供了 libbpf 的详细配置和使用说明。通过以下命令构建和安装 libbpf:
cd libbpf/src
make install
3.3 bpftool 配置
bpftool 是用于管理和调试 eBPF 程序的工具。可以通过以下命令构建和安装 bpftool:
git clone --recurse-submodules https://github.com/libbpf/bpftool.git
cd bpftool/src
make install
总结
learning-ebpf 项目通过详细的目录结构和示例代码,帮助用户学习和理解 eBPF 技术。通过 Lima 虚拟机配置文件和 libbpf、bpftool 的配置,用户可以轻松搭建运行环境并开始学习 eBPF 编程。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00