Learning eBPF 项目教程
1. 项目目录结构及介绍
learning-ebpf 项目是一个用于学习 eBPF(Extended Berkeley Packet Filter)的示例代码集合。项目的目录结构如下:
learning-ebpf/
├── chapter1
├── chapter2
├── chapter3
├── chapter4
├── chapter5
├── chapter6
├── chapter7
├── chapter8
├── chapter9
├── chapter10
├── libbpf
├── .gitignore
├── .gitmodules
├── LICENSE
├── README.md
├── learning-ebpf-cover.png
└── learning-ebpf.yaml
目录介绍
-
chapter1 至 chapter10:每个目录对应书中的一个章节,包含该章节的示例代码。
- chapter1:介绍 eBPF 及其重要性。
- chapter2:eBPF 的“Hello World”示例,使用 BCC 框架。
- chapter3:eBPF 程序的剖析,包含 C 语言编写的 XDP 示例。
- chapter4:
bpf()系统调用的使用,更多 BCC 框架示例。 - chapter5:CO-RE、BTF 和 libbpf,libbpf 示例代码。
- chapter6:eBPF 验证器,通过修改代码触发验证器错误。
- chapter7:eBPF 程序和附件类型,不同 eBPF 程序类型的示例。
- chapter8:eBPF 用于网络,示例代码附着在网络栈的不同点。
- chapter9:eBPF 用于安全,即将推出。
- chapter10:eBPF 编程,探索各种 eBPF 库的示例。
-
libbpf:包含 libbpf 的子模块,用于构建 C 语言编写的 eBPF 示例。
-
.gitignore 和 .gitmodules:Git 配置文件。
-
LICENSE:项目许可证,采用 Apache-2.0 许可证。
-
README.md:项目的介绍和使用说明。
-
learning-ebpf-cover.png:项目封面图片。
-
learning-ebpf.yaml:Lima 配置文件,用于设置虚拟机环境。
2. 项目的启动文件介绍
项目的启动文件主要集中在各个章节的目录中,每个章节都包含相应的示例代码和启动脚本。以下是一些关键的启动文件:
2.1 章节启动文件
每个章节的目录中通常包含一个或多个启动文件,用于运行该章节的示例代码。例如:
- chapter2/hello_world.py:使用 BCC 框架的“Hello World”示例。
- chapter3/xdp_example.c:C 语言编写的 XDP 示例。
2.2 Lima 配置文件
learning-ebpf.yaml 是 Lima 虚拟机的配置文件,用于设置运行示例代码所需的环境。通过以下命令启动虚拟机:
limactl start learning-ebpf.yaml
limactl shell learning-ebpf
3. 项目的配置文件介绍
3.1 Lima 配置文件
learning-ebpf.yaml 是 Lima 虚拟机的配置文件,定义了虚拟机的操作系统、内核版本、所需软件包等信息。以下是配置文件的部分内容:
# learning-ebpf.yaml 部分内容
os: ubuntu
kernel: 5.15
packages:
- clang
- libbpf
- bpftool
3.2 libbpf 配置
libbpf/README.md 提供了 libbpf 的详细配置和使用说明。通过以下命令构建和安装 libbpf:
cd libbpf/src
make install
3.3 bpftool 配置
bpftool 是用于管理和调试 eBPF 程序的工具。可以通过以下命令构建和安装 bpftool:
git clone --recurse-submodules https://github.com/libbpf/bpftool.git
cd bpftool/src
make install
总结
learning-ebpf 项目通过详细的目录结构和示例代码,帮助用户学习和理解 eBPF 技术。通过 Lima 虚拟机配置文件和 libbpf、bpftool 的配置,用户可以轻松搭建运行环境并开始学习 eBPF 编程。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00