gym-pusht 的安装和配置教程
2025-05-17 15:06:33作者:庞眉杨Will
项目基础介绍
gym-pusht 是一个开源项目,它基于 gym 库提供了一个 PushT 环境。在这个环境中,一个圆形的智能体需要推动一个 "T" 形块到达一个特定的目标区域。该环境可以用于强化学习算法的训练和测试。项目主要使用 Python 编程语言。
项目使用的关键技术和框架
该项目使用了以下关键技术:
- gym:一个用于创建和测试强化学习环境的开源库。
- NumPy:一个强大的 Python 库,用于对数组和矩阵进行高效操作。
- Matplotlib(可选):用于绘图和可视化环境。
安装和配置准备工作
在开始安装之前,请确保您的系统中已安装以下软件:
- Python 3.10 或更高版本
- pip(Python 包管理器)
- conda(推荐,用于创建虚拟环境,但不是必须的)
安装步骤
以下是详细的安装步骤:
步骤 1:创建虚拟环境(可选)
虽然这不是必须的,但推荐使用虚拟环境来避免与其他项目发生依赖冲突。
conda create -y -n pusht python=3.10
conda activate pusht
如果您没有 conda,可以使用以下命令来创建虚拟环境:
python -m venv pusht
source pusht/bin/activate # 在 Windows 下使用 pusht\Scripts\activate
步骤 2:安装 gym-pusht
在虚拟环境中,使用 pip 安装 gym-pusht:
pip install gym-pusht
步骤 3:测试安装
为了验证安装是否成功,您可以通过以下命令来测试环境:
import gym
import gym_pusht
env = gym.make("gym_pusht/PushT-v0", render_mode="human")
obs, info = env.reset()
for _ in range(1000):
action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
env.render()
if terminated or truncated:
obs, info = env.reset()
env.close()
如果上述代码没有报错,并且您可以看到智能体在环境中进行交互,那么 gym-pusht 就已经成功安装并配置完毕了。
以上就是 gym-pusht 的安装和配置指南,希望对您有所帮助。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134