gym-pusht 的安装和配置教程
2025-05-17 17:20:11作者:庞眉杨Will
项目基础介绍
gym-pusht 是一个开源项目,它基于 gym 库提供了一个 PushT 环境。在这个环境中,一个圆形的智能体需要推动一个 "T" 形块到达一个特定的目标区域。该环境可以用于强化学习算法的训练和测试。项目主要使用 Python 编程语言。
项目使用的关键技术和框架
该项目使用了以下关键技术:
- gym:一个用于创建和测试强化学习环境的开源库。
- NumPy:一个强大的 Python 库,用于对数组和矩阵进行高效操作。
- Matplotlib(可选):用于绘图和可视化环境。
安装和配置准备工作
在开始安装之前,请确保您的系统中已安装以下软件:
- Python 3.10 或更高版本
- pip(Python 包管理器)
- conda(推荐,用于创建虚拟环境,但不是必须的)
安装步骤
以下是详细的安装步骤:
步骤 1:创建虚拟环境(可选)
虽然这不是必须的,但推荐使用虚拟环境来避免与其他项目发生依赖冲突。
conda create -y -n pusht python=3.10
conda activate pusht
如果您没有 conda,可以使用以下命令来创建虚拟环境:
python -m venv pusht
source pusht/bin/activate # 在 Windows 下使用 pusht\Scripts\activate
步骤 2:安装 gym-pusht
在虚拟环境中,使用 pip 安装 gym-pusht:
pip install gym-pusht
步骤 3:测试安装
为了验证安装是否成功,您可以通过以下命令来测试环境:
import gym
import gym_pusht
env = gym.make("gym_pusht/PushT-v0", render_mode="human")
obs, info = env.reset()
for _ in range(1000):
action = env.action_space.sample()
obs, reward, terminated, truncated, info = env.step(action)
env.render()
if terminated or truncated:
obs, info = env.reset()
env.close()
如果上述代码没有报错,并且您可以看到智能体在环境中进行交互,那么 gym-pusht 就已经成功安装并配置完毕了。
以上就是 gym-pusht 的安装和配置指南,希望对您有所帮助。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.72 K
暂无简介
Dart
635
144
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
651
275
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
245
316
Ascend Extension for PyTorch
Python
196
215