ASP.NET Extensions 项目中的 AI 函数调用错误处理机制优化
2025-06-27 19:41:35作者:吴年前Myrtle
在 ASP.NET Extensions 项目中,开发团队近期对 AI 函数调用(Function Calling)的错误处理逻辑进行了深入讨论和优化。这项改进主要针对 AI 功能调用时的异常处理机制,旨在提供更灵活、更安全的错误处理方式,同时防止潜在的资源浪费问题。
原有机制分析
在之前的实现中,系统提供了两种基本的错误处理模式:
-
RetryOnError=false 模式
- 当发生异常时,系统会进行最后一次尝试获取答案
- 在此次尝试中,所有工具(tools)都不可用
- 目的是在不要求应用开发者捕获 AIFunction 中错误的情况下,生成"抱歉,操作失败"的响应
-
RetryOnError=true 模式
- 发生异常时,系统会持续循环直到达到 MaximumIterationsPerRequest 限制
- 默认情况下这个限制是无限的
存在的问题
原有设计存在几个明显的不足:
- 循环终止机制不够严格,可能导致资源浪费
- "Retry"命名不够准确,容易引起误解
- 配置方式不够灵活,无法满足不同场景的需求
- 缺乏对连续错误的限制机制
优化方案
经过深入讨论,团队提出了以下优化方案:
1. 更严格的循环终止控制
- 默认将 MaximumIterationsPerRequest 设置为 10(具体数值待定)
- 新增 MaximumConsecutiveErrorsPerRequest 参数,默认值为 3
- 这些限制共同作用,可有效防止以下情况:
- LLM 无限调用问题函数
- 提示注入攻击导致 LLM 无限调用成功函数
2. 错误处理模式重构
- 用 FunctionInvocationErrorHandlingMode 替代原有的 RetryOnError
- 提供两种基本模式:
- Throw:不捕获异常,直接重新抛出(适用于非聊天循环场景)
- Retry:相当于原有的 RetryOnError=true
- 默认使用 Retry 模式,依靠 MaximumConsecutiveErrorsPerRequest 限制重试次数
3. 配置方式优化
- 将错误处理模式配置从 FunctionCallingChatClient 移到 ChatOptions
- 允许在每次调用时单独设置
- 通过类层次结构实现扩展性,支持自定义错误处理逻辑
简化后的最终方案
经过进一步思考,团队决定采用更简洁的设计:
-
循环控制参数
- 默认 MaximumIterationsPerRequest = 10
- 新增 MaximumConsecutiveErrorsPerRequest = 3
-
移除 RetryOnError 参数
- 默认情况下,LLM 最多有 2 次额外尝试机会
- 如需禁用重试,设置 MaximumConsecutiveErrorsPerRequest ≤ 1
- 如需实现"最后一次无工具尝试",可通过添加中间件实现
技术实现要点
-
错误计数机制
- 系统会跟踪连续错误次数
- 当达到 MaximumConsecutiveErrorsPerRequest 限制时终止循环
-
历史记录增强
- 每次失败的工具调用都会在历史记录中添加错误信息
- 帮助 LLM 在下一次尝试时调整行为
-
中间件扩展
- 开发者可以通过添加中间件实现自定义错误处理逻辑
- 例如:检测到失败工具调用后,将 ToolMode 设置为 None
实际应用建议
-
聊天场景
- 保持默认设置,允许有限次数的自动重试
- 利用错误信息帮助 LLM 自我修正
-
结构化输出场景
- 设置更严格的错误限制
- 考虑添加自定义中间件处理特定错误类型
-
高安全性要求场景
- 将 MaximumConsecutiveErrorsPerRequest 设为 1
- 快速失败并返回错误,减少潜在攻击面
这项改进使 ASP.NET Extensions 的 AI 函数调用功能更加健壮和安全,同时保持了足够的灵活性以满足不同应用场景的需求。开发者现在可以更精确地控制错误处理行为,防止资源滥用,并实现更复杂的自定义错误处理逻辑。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K