CUML项目中HDBSCAN软聚类的内存优化方案探讨
背景介绍
在机器学习领域,HDBSCAN是一种基于层次密度的聚类算法,它能够自动发现数据中的聚类结构并识别噪声点。CUML作为RAPIDS生态系统中的机器学习库,提供了GPU加速的HDBSCAN实现。然而,在处理大规模数据集时,软聚类功能面临着严峻的内存挑战。
问题分析
当使用HDBSCAN进行软聚类时,算法需要计算每个数据点属于每个聚类的概率。对于一个包含150万数据点、产生1.5万个聚类的场景,存储这些概率值需要约90GB内存。这种内存需求在大规模数据处理中显然是不可持续的。
技术挑战
-
内存消耗问题:传统实现需要为每个数据点存储所有聚类的概率值,导致内存需求随数据规模和聚类数量呈二次方增长。
-
实际需求分析:大多数应用场景中,用户往往只关心每个点属于前几个最可能聚类的概率,而非全部聚类信息。
-
算法特性:HDBSCAN的软聚类计算具有点独立性,即一个点的概率计算不依赖于其他点的结果,这为优化提供了可能。
优化方案
核心思路
-
概率值截断:仅保留每个数据点属于前k个最可能聚类的概率值,显著减少存储需求。
-
噪声概率单独存储:将数据点作为噪声的概率单独存储,便于后续分析。
-
批处理机制:将数据分批处理,避免一次性加载全部数据到内存。
实现细节
-
参数设计:在构造函数中新增参数,允许用户指定需要保留的top-k概率值数量。
-
GPU优化:利用CUDA内核并行计算每个数据点的概率,并在GPU上直接进行top-k筛选。
-
内存管理:采用流式处理方式,分批读取数据、计算并输出结果,避免内存峰值过高。
技术考量
-
算法准确性:优化方案不影响核心聚类结果,仅改变输出信息的组织形式。
-
灵活性:保留完整功能的接口,同时提供内存优化版本供选择。
-
性能权衡:虽然top-k操作增加少量计算开销,但大幅降低的内存需求使得处理更大规模数据成为可能。
应用建议
-
参数调优:根据实际需求调整min_samples和min_cluster_size参数,平衡聚类数量与噪声点比例。
-
功能选择:对于不需要完整概率矩阵的应用,优先使用优化版本。
-
分批处理:对于极端大规模数据,可考虑手动实现分批处理策略。
总结
CUML中HDBSCAN的软聚类内存优化方案为解决大规模数据处理提供了可行路径。通过概率值截断和批处理机制,可以在保证算法核心功能的前提下,显著降低内存需求。这一优化特别适用于聚类数量多、数据规模大的应用场景,为实际工程部署提供了更多可能性。未来可进一步探索更高效的概率计算和存储策略,持续提升算法可扩展性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01