CUML项目中HDBSCAN软聚类的内存优化方案探讨
背景介绍
在机器学习领域,HDBSCAN是一种基于层次密度的聚类算法,它能够自动发现数据中的聚类结构并识别噪声点。CUML作为RAPIDS生态系统中的机器学习库,提供了GPU加速的HDBSCAN实现。然而,在处理大规模数据集时,软聚类功能面临着严峻的内存挑战。
问题分析
当使用HDBSCAN进行软聚类时,算法需要计算每个数据点属于每个聚类的概率。对于一个包含150万数据点、产生1.5万个聚类的场景,存储这些概率值需要约90GB内存。这种内存需求在大规模数据处理中显然是不可持续的。
技术挑战
-
内存消耗问题:传统实现需要为每个数据点存储所有聚类的概率值,导致内存需求随数据规模和聚类数量呈二次方增长。
-
实际需求分析:大多数应用场景中,用户往往只关心每个点属于前几个最可能聚类的概率,而非全部聚类信息。
-
算法特性:HDBSCAN的软聚类计算具有点独立性,即一个点的概率计算不依赖于其他点的结果,这为优化提供了可能。
优化方案
核心思路
-
概率值截断:仅保留每个数据点属于前k个最可能聚类的概率值,显著减少存储需求。
-
噪声概率单独存储:将数据点作为噪声的概率单独存储,便于后续分析。
-
批处理机制:将数据分批处理,避免一次性加载全部数据到内存。
实现细节
-
参数设计:在构造函数中新增参数,允许用户指定需要保留的top-k概率值数量。
-
GPU优化:利用CUDA内核并行计算每个数据点的概率,并在GPU上直接进行top-k筛选。
-
内存管理:采用流式处理方式,分批读取数据、计算并输出结果,避免内存峰值过高。
技术考量
-
算法准确性:优化方案不影响核心聚类结果,仅改变输出信息的组织形式。
-
灵活性:保留完整功能的接口,同时提供内存优化版本供选择。
-
性能权衡:虽然top-k操作增加少量计算开销,但大幅降低的内存需求使得处理更大规模数据成为可能。
应用建议
-
参数调优:根据实际需求调整min_samples和min_cluster_size参数,平衡聚类数量与噪声点比例。
-
功能选择:对于不需要完整概率矩阵的应用,优先使用优化版本。
-
分批处理:对于极端大规模数据,可考虑手动实现分批处理策略。
总结
CUML中HDBSCAN的软聚类内存优化方案为解决大规模数据处理提供了可行路径。通过概率值截断和批处理机制,可以在保证算法核心功能的前提下,显著降低内存需求。这一优化特别适用于聚类数量多、数据规模大的应用场景,为实际工程部署提供了更多可能性。未来可进一步探索更高效的概率计算和存储策略,持续提升算法可扩展性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00