Spring Data Elasticsearch 中 Criteria 查询的正确使用方式
2025-06-27 19:02:20作者:廉彬冶Miranda
在使用 Spring Data Elasticsearch 进行文档查询时,Criteria API 是一个非常强大且灵活的工具。然而,如果不正确使用 Criteria 构建查询,可能会导致意外的 NullPointerException 或其他错误。本文将深入探讨 Criteria API 的正确使用方式,特别是处理否定查询和组合查询时的注意事项。
常见错误模式分析
许多开发者在使用 Criteria API 时容易犯以下两个典型错误:
-
创建无意义的空 Criteria 对象:直接使用
new Criteria()
而不指定任何字段和条件,这样的 Criteria 对象在实际查询中没有任何作用。 -
忽略方法返回值:
and()
和or()
方法会返回新的 Criteria 实例或修改后的 Criteria 实例,但开发者有时会忽略这一点,导致查询构建不完整。
正确的 Criteria 构建方式
基本查询构建
正确的 Criteria 查询应该从指定字段开始:
// 正确的方式:直接指定字段和条件
Criteria criteria = Criteria.where("subject.documentId").is(search.getDocumentId())
.and("audit.deletedBy.id").not().exists();
这种方式清晰明了,直接链式调用构建完整的查询条件。
条件动态构建
在实际应用中,我们经常需要根据业务逻辑动态构建查询条件。正确的做法是:
Criteria criteria = new Criteria(); // 初始化为空条件
if (search.getDocumentId() != null) {
criteria = criteria.and("subject.documentId").is(search.getDocumentId());
}
if (search.getDeleted() != null) {
criteria = search.getDeleted()
? criteria.and("audit.deletedBy.id").exists()
: criteria.and("audit.deletedBy.id").not().exists();
}
虽然这里也使用了空 Criteria 初始化,但在动态构建场景下,这是可以接受的模式。
否定查询的注意事项
使用 .not()
进行否定查询时需要特别注意:
.not()
必须紧跟在字段指定之后,条件指定之前- 否定查询会创建特殊的查询结构,确保 Elasticsearch 能正确解析
// 正确否定查询
Criteria.where("audit.deletedBy.id").not().exists();
// 错误方式(会导致NPE)
Criteria criteria = new Criteria();
criteria.and(new Criteria("audit.deletedBy.id").not().exists());
组合查询的最佳实践
对于复杂的组合查询,建议:
- 优先使用链式调用保持代码清晰
- 对于特别复杂的查询,可以考虑拆分并最后组合
- 使用适当的缩进和格式化提高可读性
// 复杂查询示例
Criteria criteria = Criteria.where("status").is("ACTIVE")
.and(
Criteria.where("createDate").gte(startDate)
.or("updateDate").gte(startDate)
)
.and("department").in(departments);
总结
Spring Data Elasticsearch 的 Criteria API 提供了强大的查询构建能力,但需要遵循正确的使用模式。记住始终从具体字段开始构建查询,正确处理否定查询,并注意方法返回值。通过遵循这些最佳实践,可以避免常见的 NPE 错误,构建出高效可靠的 Elasticsearch 查询。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133