QuickJS-NG 项目中的 test262 测试并行化优化
在 JavaScript 引擎开发领域,test262 测试套件是验证引擎是否符合 ECMAScript 标准的重要工具。随着 QuickJS-NG 项目对 test262 测试覆盖范围的不断扩大,测试执行时间也随之增长,这对开发效率产生了直接影响。
问题背景
QuickJS-NG 项目中的 run-test262 工具目前以单线程方式执行测试,这在测试规模扩大后会导致明显的性能瓶颈。现代计算机普遍具备多核处理能力,如果能充分利用这些计算资源,理论上可以实现接近 N 倍的性能提升(N 为 CPU 核心数)。
技术挑战
实现多线程测试执行面临几个关键技术挑战:
-
测试结果收集:需要确保在多线程环境下,失败的测试用例能够被正确记录并保存到 test262_errors.txt 文件中。
-
结果排序:多线程执行会导致测试结果写入顺序不确定,需要保证最终输出的错误文件内容具有确定性,便于版本控制和结果比对。
-
线程安全:需要确保共享数据结构(如测试结果列表)的线程安全访问。
解决方案
项目采用了一种稳健的并行化方案:
-
测试枚举阶段:在测试开始前,首先递归扫描目录树收集所有测试文件,并使用 qsort 对这些文件按字母顺序排序,确保测试执行的确定性基础。
-
并行执行阶段:将排序后的测试列表分配给多个工作线程并行执行,每个线程独立运行分配的测试用例。
-
结果收集阶段:采用两种方式处理测试结果:
- 对于失败用例,将其记录到内存中的线程安全数据结构
- 实时输出详细测试报告到 test262_report.txt 文件(无需排序)
-
结果输出阶段:在所有线程完成后,对收集到的失败用例再次按字母顺序排序,然后写入 test262_errors.txt 文件,确保每次运行生成的错误文件内容一致。
实现细节
在具体实现上,项目维护了一个测试列表数据结构 namelist_t,其中包含测试文件数组和计数信息。关键函数 enumerate_tests 负责收集和排序测试文件:
/* 从目录树中查找 js 文件并排序列表 */
static void enumerate_tests(const char *path) {
namelist_t *lp = &test_list;
int start = lp->count;
ftw(path, add_test_file, 100);
qsort(lp->array + start, lp->count - start, sizeof(*lp->array),
namelist_cmp_indirect);
}
这种设计既保证了测试执行的并行效率,又确保了结果的可重复性,是工程实践中平衡性能和正确性的典范。
实际效益
通过这种并行化改造,QuickJS-NG 项目能够:
- 显著缩短测试执行时间,提高开发迭代速度
- 保持测试结果的确定性和可重复性
- 为未来更大规模的测试覆盖奠定基础
这种优化思路不仅适用于 QuickJS-NG,对于其他需要执行大规模测试套件的项目也具有参考价值,展示了如何通过合理的架构设计充分利用现代硬件资源。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00