QuickJS-NG 项目中的 test262 测试并行化优化
在 JavaScript 引擎开发领域,test262 测试套件是验证引擎是否符合 ECMAScript 标准的重要工具。随着 QuickJS-NG 项目对 test262 测试覆盖范围的不断扩大,测试执行时间也随之增长,这对开发效率产生了直接影响。
问题背景
QuickJS-NG 项目中的 run-test262 工具目前以单线程方式执行测试,这在测试规模扩大后会导致明显的性能瓶颈。现代计算机普遍具备多核处理能力,如果能充分利用这些计算资源,理论上可以实现接近 N 倍的性能提升(N 为 CPU 核心数)。
技术挑战
实现多线程测试执行面临几个关键技术挑战:
-
测试结果收集:需要确保在多线程环境下,失败的测试用例能够被正确记录并保存到 test262_errors.txt 文件中。
-
结果排序:多线程执行会导致测试结果写入顺序不确定,需要保证最终输出的错误文件内容具有确定性,便于版本控制和结果比对。
-
线程安全:需要确保共享数据结构(如测试结果列表)的线程安全访问。
解决方案
项目采用了一种稳健的并行化方案:
-
测试枚举阶段:在测试开始前,首先递归扫描目录树收集所有测试文件,并使用 qsort 对这些文件按字母顺序排序,确保测试执行的确定性基础。
-
并行执行阶段:将排序后的测试列表分配给多个工作线程并行执行,每个线程独立运行分配的测试用例。
-
结果收集阶段:采用两种方式处理测试结果:
- 对于失败用例,将其记录到内存中的线程安全数据结构
- 实时输出详细测试报告到 test262_report.txt 文件(无需排序)
-
结果输出阶段:在所有线程完成后,对收集到的失败用例再次按字母顺序排序,然后写入 test262_errors.txt 文件,确保每次运行生成的错误文件内容一致。
实现细节
在具体实现上,项目维护了一个测试列表数据结构 namelist_t,其中包含测试文件数组和计数信息。关键函数 enumerate_tests 负责收集和排序测试文件:
/* 从目录树中查找 js 文件并排序列表 */
static void enumerate_tests(const char *path) {
namelist_t *lp = &test_list;
int start = lp->count;
ftw(path, add_test_file, 100);
qsort(lp->array + start, lp->count - start, sizeof(*lp->array),
namelist_cmp_indirect);
}
这种设计既保证了测试执行的并行效率,又确保了结果的可重复性,是工程实践中平衡性能和正确性的典范。
实际效益
通过这种并行化改造,QuickJS-NG 项目能够:
- 显著缩短测试执行时间,提高开发迭代速度
- 保持测试结果的确定性和可重复性
- 为未来更大规模的测试覆盖奠定基础
这种优化思路不仅适用于 QuickJS-NG,对于其他需要执行大规模测试套件的项目也具有参考价值,展示了如何通过合理的架构设计充分利用现代硬件资源。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00