基于IBM日本技术的Python Flask应用开发:构建工作日志系统
2025-06-02 06:53:42作者:宗隆裙
项目概述
本文将介绍如何利用IBM日本技术团队提供的解决方案,开发一个基于Python Flask框架的工作日志Web应用。该系统能够记录不同类型的出勤情况,包括办公室工作、远程办公、休假、节假日和病假等,并通过Kubernetes实现容器化部署。
技术架构解析
核心组件
该解决方案采用了现代化的微服务架构,主要包含以下技术组件:
- 前端界面:使用React框架构建响应式用户界面
- 后端服务:基于Python Flask框架开发的RESTful API
- 数据存储:MongoDB文档数据库
- 容器编排:Kubernetes集群管理
系统工作流程
- 用户交互层:用户通过Web界面进行账户创建、登录和日志管理操作
- API处理层:React前端发起API请求,Flask后端服务接收并处理
- 数据持久层:所有操作结果最终存储在MongoDB中
- 响应返回:处理结果通过API返回前端展示
关键技术详解
Python Flask框架
Flask是一个轻量级的Python Web框架,特别适合快速开发API服务。在本项目中:
- 使用Flask-RESTful扩展构建规范的API接口
- 通过Flask-Login实现用户认证功能
- 利用Flask-PyMongo简化MongoDB操作
MongoDB集成
作为NoSQL数据库,MongoDB在本项目中展现了以下优势:
- 灵活的文档结构适合存储多样化的日志数据
- 高性能的读写能力满足Web应用需求
- 易于扩展的分布式特性
Kubernetes部署
容器化部署方案提供了:
- 服务的高可用性保障
- 弹性伸缩能力
- 简化的运维管理
开发实践指南
环境准备
- 安装Python 3.6+环境
- 配置Docker运行环境
- 准备Kubernetes集群
项目结构
典型的工作日志应用包含以下模块:
├── app.py # Flask主应用
├── requirements.txt # Python依赖
├── static/ # 前端静态资源
├── templates/ # HTML模板
└── kubernetes/ # K8s部署配置
核心功能实现
用户认证模块
from flask_login import LoginManager
login_manager = LoginManager()
login_manager.init_app(app)
@login_manager.user_loader
def load_user(user_id):
return User.get(user_id)
日志记录API
from flask_restful import Resource
class WorkLogAPI(Resource):
def get(self, date):
# 查询指定日期日志
pass
def post(self):
# 新增日志记录
pass
MongoDB操作
from flask_pymongo import PyMongo
mongo = PyMongo(app)
# 插入日志记录
mongo.db.logs.insert_one({
'date': '2023-01-01',
'type': 'office',
'user_id': current_user.id
})
部署方案
容器化构建
- 编写Dockerfile定义应用环境
- 构建应用镜像并推送到镜像仓库
- 准备MongoDB容器镜像
Kubernetes配置
典型的部署描述文件包括:
- Deployment:定义应用副本和更新策略
- Service:暴露应用服务
- ConfigMap:管理应用配置
- Secret:存储敏感信息
最佳实践建议
- API设计:遵循RESTful规范,使用Swagger进行API文档管理
- 错误处理:实现统一的错误响应格式
- 日志记录:配置完善的日志系统便于问题排查
- 性能优化:考虑添加缓存层提升响应速度
总结
通过这个工作日志系统的开发实践,我们完整体验了从应用设计到容器化部署的全流程。项目展示了如何将Python Flask与MongoDB、React以及Kubernetes等技术有机结合,构建现代化的Web应用。这种架构模式不仅适用于日志系统,也可以扩展到其他类型的企业应用开发中。
对于希望学习全栈开发和云原生技术的开发者而言,这个项目提供了很好的实践机会。通过调整和扩展功能模块,可以进一步深化对微服务架构的理解和应用能力。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
685
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
343
146