GLCIC-PyTorch: 全球与局部一致图像 completion 的高质量 PyTorch 实现
2024-08-10 08:20:40作者:袁立春Spencer
项目介绍
GLCIC-PyTorch 是一个基于 PyTorch 框架的高质量实现,该实现主要针对的是 "Globally and Locally Consistent Image Completion" 技术,由 Iizuka 等人提出。这个项目旨在生成在全局一致性及细节层面接近真实图像的图像完成结果。它利用了一个完成网络以及两个辅助的上下文鉴别器网络来确保生成的图像不仅整体和谐,而且局部细节逼真。在实际应用中,鉴别器用于训练过程,确保生成图像能够欺骗这些网络,从而达到接近真实的质量。
项目快速启动
环境准备
确保你的开发环境满足以下要求:
- Python 3.7.6
- PyTorch 1.6.0(含 CUDA 10.1)
- TorchVision 0.7.0
- tqdm 4.50.2
- Pillow 8.0.0
- opencv-python 4.4.0.44
- NumPy 1.19.2
- 推荐硬件环境包括 GeForce GTX 1080Ti GPU(或同等性能GPU)x 4
可以通过运行以下命令来安装必要的依赖项:
pip install -r requirements.txt
快速开始
-
下载预训练模型:首先,你需要下载预训练的生成器模型和训练配置文件。
- 预训练模型可以从提供的链接中获取。
-
运行推理:
- 示例命令:具体的命令未直接给出,通常情况下,你会有一个
predict.py或者按照文档指示使用train.py的某些参数来进行推理。
- 示例命令:具体的命令未直接给出,通常情况下,你会有一个
应用案例和最佳实践
在图像修复领域,GLCIC-PyTorch 可以用来恢复因各种原因损坏或缺失的图像部分。比如修复老照片中的裂痕、填补由于遮挡造成的空白区域,或是艺术创作中对特定部分的重构。最佳实践包括仔细挑选训练数据集,以涵盖广泛的情况,确保模型泛化能力;并在使用前对模型进行适当的微调以适应特定应用场景。
# 示例代码段通常会涉及如何加载模型并进行预测,但具体代码取决于项目的实际API设计。
# 假设我们有个predict函数,它接收模型路径和输入图像路径作为参数
# (以下为伪代码,实际代码请参照项目文档)
# def predict(model_path, image_path):
# model = load_model(model_path)
# repaired_image = model.restore(image_path)
# return repaired_image
典型生态项目
虽然GLCIC-PyTorch本身作为一个独立的项目存在,其典型生态往往涉及到计算机视觉、深度学习研究和应用领域。开发者可以在诸如图像编辑软件、自动化内容生成、多媒体资源管理等更广泛的场景中集成这一技术,或将其与其他CV库结合,构建更加复杂的图像处理流水线。此外,社区中的其他项目可能会基于GLCIC-PyTorch进行扩展,例如增加新的损失函数、改进数据增强策略,或是探索不同的应用场景。
以上就是关于 GLCIC-PyTorch 的简要教程概述,详细的步骤和配置可能需要参考项目仓库中的 README.md 文件和相关说明文档,以获取最新和最精确的指南。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
648
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216