开源项目下载与安装教程:基于单目图像的实时深度估计
2024-12-04 21:16:30作者:尤辰城Agatha
1. 项目介绍
本项目是一个基于Unity引擎的实时深度估计开源项目,使用了MiDaS v2神经网络库,并通过Unity的Barracuda推理框架进行图像处理。该技术能够从单目图像中估计出场景的深度信息,为虚拟现实、增强现实等领域提供了深度感知能力。
2. 项目下载位置
项目托管在GitHub上,您可以通过以下地址访问项目仓库:GitHub - GeorgeAdamon/monocular-depth-unity
3. 项目安装环境配置
Unity版本要求
- Unity 2021.2 或更高版本
Unity Package Manager配置
com.unity.barracuda版本 3.0.0 或更高com.unity.collections版本 2.1.0-pre.11 或更高com.unity.mathematics版本 1.2.6 或更高com.unity.burst版本 1.8.3 或更高
以下为Unity Package Manager的配置界面示例:
image: 
安装环境配置步骤
- 打开Unity编辑器。
- 转到“Window” > “Package Manager”打开Unity Package Manager。
- 在左上角选择“Add package from git URL”。
- 输入项目的Git地址:
https://github.com/GeorgeAdamon/monocular-depth-unity.git。 - 确认后,Unity Package Manager将会自动下载和安装所需的包。
4. 项目安装方式
本项目支持两种安装方式:Unity Package Manager (UPM) 和 Legacy。
使用Unity Package Manager安装
在Unity Package Manager中,添加以下JSON配置到manifest.json文件:
{
"ulc-nn-depth": "https://github.com/GeorgeAdamon/monocular-depth-unity.git#main"
}
使用Legacy安装
在Unity Package Manager中,添加以下JSON配置到manifest.json文件:
{
"ulc-nn-depth": "https://github.com/GeorgeAdamon/monocular-depth-unity.git#v1.0.0"
}
5. 项目处理脚本
项目中的处理脚本主要是通过Unity的Prefab进行配置和使用的。以下是一些基本的步骤:
- 在项目中找到
DEPTH_FROM_IMAGEprefab。 - 在
Input Texture槽中添加您喜欢的Texture,可以是RenderTextures或Texture2D对象。 - 在
Depth Mesher对象中参数化视觉输出,可以使用Shader方法来获得最佳性能,或者使用Mesh来得到一个实际的网格。
如果Color Texture留空,网格将默认使用深度数据来进行着色。
通过以上步骤,您就可以开始使用本项目来估计单目图像中的深度信息了。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350