Pinyin Analysis 插件使用教程
2024-09-14 23:00:14作者:邵娇湘
1. 项目介绍
Pinyin Analysis 是一个用于 Elasticsearch 和 OpenSearch 的插件,旨在实现中文汉字与拼音之间的转换。该插件支持多种配置选项,可以根据需求灵活调整拼音转换的方式。Pinyin Analysis 插件的主要功能包括:
- 将中文汉字转换为拼音。
- 支持多种拼音转换模式,如首字母、全拼音、混合模式等。
- 支持 Elasticsearch 和 OpenSearch 的主要版本。
2. 项目快速启动
2.1 安装插件
首先,您需要下载并安装 Pinyin Analysis 插件。您可以通过以下命令安装插件:
# 对于 Elasticsearch
bin/elasticsearch-plugin install https://get.infini.cloud/elasticsearch/analysis-pinyin/8.4.1
# 对于 OpenSearch
bin/opensearch-plugin install https://get.infini.cloud/opensearch/analysis-pinyin/2.12.0
请根据您的 Elasticsearch 或 OpenSearch 版本替换相应的版本号。
2.2 创建索引并配置拼音分析器
接下来,创建一个索引并配置拼音分析器:
PUT /medcl
{
"settings": {
"analysis": {
"analyzer": {
"pinyin_analyzer": {
"tokenizer": "my_pinyin"
}
},
"tokenizer": {
"my_pinyin": {
"type": "pinyin",
"keep_separate_first_letter": false,
"keep_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"lowercase": true,
"remove_duplicated_term": true
}
}
}
}
}
2.3 测试分析器
您可以使用以下命令测试拼音分析器:
GET /medcl/_analyze
{
"text": ["刘德华"],
"analyzer": "pinyin_analyzer"
}
2.4 创建映射
创建映射以使用拼音分析器:
POST /medcl/_mapping
{
"properties": {
"name": {
"type": "keyword",
"fields": {
"pinyin": {
"type": "text",
"store": false,
"term_vector": "with_offsets",
"analyzer": "pinyin_analyzer",
"boost": 10
}
}
}
}
}
2.5 索引文档
索引一个文档:
POST /medcl/_create/andy
{
"name": "刘德华"
}
2.6 搜索文档
使用拼音进行搜索:
curl http://localhost:9200/medcl/_search?q=name:刘德华
curl http://localhost:9200/medcl/_search?q=name.pinyin:liu
curl http://localhost:9200/medcl/_search?q=name.pinyin:ldh
3. 应用案例和最佳实践
3.1 中文搜索优化
Pinyin Analysis 插件可以显著提升中文搜索的准确性和用户体验。通过将中文汉字转换为拼音,用户可以使用拼音进行搜索,即使他们不知道汉字的准确写法。
3.2 多语言支持
在多语言环境中,Pinyin Analysis 插件可以帮助用户在不知道汉字的情况下,通过拼音进行搜索,从而提高搜索的灵活性和覆盖范围。
4. 典型生态项目
4.1 Elasticsearch
Pinyin Analysis 插件是 Elasticsearch 生态系统中的一个重要组成部分,广泛应用于中文搜索、数据分析等领域。
4.2 OpenSearch
OpenSearch 是 Elasticsearch 的一个分支,Pinyin Analysis 插件同样适用于 OpenSearch,为 OpenSearch 用户提供中文拼音转换功能。
通过以上步骤,您可以快速上手并使用 Pinyin Analysis 插件,提升中文搜索的效率和准确性。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193