4M项目中的Token Masking机制深度解析
在苹果开源的4M多模态模型中,Token Masking机制是实现跨模态学习的关键技术之一。本文将从技术实现角度深入剖析4M如何处理不同模态的token masking问题。
Token Masking的双重含义
在4M项目中,"mask"一词实际上具有双重含义,这容易造成初学者的混淆。第一种含义是指无效/忽略掩码(ignore mask),用于标记那些应该被解码器完全忽略的token;第二种含义则是类似T5/MAE中的token masking实现,用于控制哪些token会被输入编码器或解码器。
无效token处理机制
在解码器实现中,当有效token数量小于解码器序列长度时,模型会将无效token及其对应的位置编码都置零。这种处理方式类似于语言模型中的padding token处理,目的是让模型能够忽略这些无效位置。
值得注意的是,同样的处理也发生在编码器部分,这是为了确保编码器和解码器在处理无效token时保持一致性。这种对称处理有助于模型在不同模态间建立更稳定的关联。
跨模态Masking实现
真正的token masking实现主要位于数据加载模块中。该模块负责定义三个关键要素:
- 哪些token会输入编码器
- 哪些token会输入解码器
- 哪些token会被完全丢弃(即无效token)
在模型前向传播过程中,forward_mask_encoder()和forward_mask_decoder()函数会从所有拼接的token中收集有效token,确保它们位于序列的开头部分,而无效token则被放置在序列末尾。
图像模态的特殊处理
对于图像类模态,模型采用了类似BERT/MAE的masking策略。在cat_decoder_tensors()函数中,解码器token会被置零。这种处理方式使得模型能够学习从部分可见信息重建完整内容的能力,这是自监督学习中的常见技术。
技术实现要点
理解4M的masking机制需要注意几个关键点:
- 无效token处理与内容masking是不同的概念
- 位置编码的masking是为了处理序列长度不一致问题
- 不同模态可能采用不同的masking策略
- 编码器和解码器的masking处理需要保持协调
这种精细的masking控制机制是4M能够有效处理多种模态数据的关键所在,为跨模态表示学习提供了坚实的基础。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









