4M项目中的Token Masking机制深度解析
在苹果开源的4M多模态模型中,Token Masking机制是实现跨模态学习的关键技术之一。本文将从技术实现角度深入剖析4M如何处理不同模态的token masking问题。
Token Masking的双重含义
在4M项目中,"mask"一词实际上具有双重含义,这容易造成初学者的混淆。第一种含义是指无效/忽略掩码(ignore mask),用于标记那些应该被解码器完全忽略的token;第二种含义则是类似T5/MAE中的token masking实现,用于控制哪些token会被输入编码器或解码器。
无效token处理机制
在解码器实现中,当有效token数量小于解码器序列长度时,模型会将无效token及其对应的位置编码都置零。这种处理方式类似于语言模型中的padding token处理,目的是让模型能够忽略这些无效位置。
值得注意的是,同样的处理也发生在编码器部分,这是为了确保编码器和解码器在处理无效token时保持一致性。这种对称处理有助于模型在不同模态间建立更稳定的关联。
跨模态Masking实现
真正的token masking实现主要位于数据加载模块中。该模块负责定义三个关键要素:
- 哪些token会输入编码器
- 哪些token会输入解码器
- 哪些token会被完全丢弃(即无效token)
在模型前向传播过程中,forward_mask_encoder()和forward_mask_decoder()函数会从所有拼接的token中收集有效token,确保它们位于序列的开头部分,而无效token则被放置在序列末尾。
图像模态的特殊处理
对于图像类模态,模型采用了类似BERT/MAE的masking策略。在cat_decoder_tensors()函数中,解码器token会被置零。这种处理方式使得模型能够学习从部分可见信息重建完整内容的能力,这是自监督学习中的常见技术。
技术实现要点
理解4M的masking机制需要注意几个关键点:
- 无效token处理与内容masking是不同的概念
- 位置编码的masking是为了处理序列长度不一致问题
- 不同模态可能采用不同的masking策略
- 编码器和解码器的masking处理需要保持协调
这种精细的masking控制机制是4M能够有效处理多种模态数据的关键所在,为跨模态表示学习提供了坚实的基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00