4M项目中的Token Masking机制深度解析
在苹果开源的4M多模态模型中,Token Masking机制是实现跨模态学习的关键技术之一。本文将从技术实现角度深入剖析4M如何处理不同模态的token masking问题。
Token Masking的双重含义
在4M项目中,"mask"一词实际上具有双重含义,这容易造成初学者的混淆。第一种含义是指无效/忽略掩码(ignore mask),用于标记那些应该被解码器完全忽略的token;第二种含义则是类似T5/MAE中的token masking实现,用于控制哪些token会被输入编码器或解码器。
无效token处理机制
在解码器实现中,当有效token数量小于解码器序列长度时,模型会将无效token及其对应的位置编码都置零。这种处理方式类似于语言模型中的padding token处理,目的是让模型能够忽略这些无效位置。
值得注意的是,同样的处理也发生在编码器部分,这是为了确保编码器和解码器在处理无效token时保持一致性。这种对称处理有助于模型在不同模态间建立更稳定的关联。
跨模态Masking实现
真正的token masking实现主要位于数据加载模块中。该模块负责定义三个关键要素:
- 哪些token会输入编码器
- 哪些token会输入解码器
- 哪些token会被完全丢弃(即无效token)
在模型前向传播过程中,forward_mask_encoder()和forward_mask_decoder()函数会从所有拼接的token中收集有效token,确保它们位于序列的开头部分,而无效token则被放置在序列末尾。
图像模态的特殊处理
对于图像类模态,模型采用了类似BERT/MAE的masking策略。在cat_decoder_tensors()函数中,解码器token会被置零。这种处理方式使得模型能够学习从部分可见信息重建完整内容的能力,这是自监督学习中的常见技术。
技术实现要点
理解4M的masking机制需要注意几个关键点:
- 无效token处理与内容masking是不同的概念
- 位置编码的masking是为了处理序列长度不一致问题
- 不同模态可能采用不同的masking策略
- 编码器和解码器的masking处理需要保持协调
这种精细的masking控制机制是4M能够有效处理多种模态数据的关键所在,为跨模态表示学习提供了坚实的基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00