ungoogled-chromium项目编译问题分析与解决方案
在ungoogled-chromium项目的最新版本127.0.6533.72编译过程中,Slackware系统用户遇到了几个关键性的编译错误。本文将详细分析这些问题的根源,并提供完整的解决方案。
问题现象
编译过程主要遇到两类错误:
-
早期阶段错误:当执行"ninja -C out/Release"命令时,系统报告缺少llvm-build相关文件,错误提示为"missing and no known rule to make it"。
-
后期阶段错误:在编译接近完成时(53704/61217步骤),出现多个文件找不到的错误,包括:
- chrome/common/companion/visual_query.mojom.h
- chrome/browser/ui/webui_name_variants.h
根本原因分析
经过深入调查,这些问题主要由以下几个因素导致:
-
项目结构调整:Chromium源码包现在包含了third_party/llvm-build目录,这与ungoogled-chromium的修剪机制产生了冲突。
-
依赖路径问题:新的DEPS包含方式改变了部分文件的存放位置,而修剪脚本未能完全适应这一变化。
-
ninja版本兼容性:较新版本的ninja对路径处理更加严格,导致一些原本可以工作的编译流程现在会失败。
完整解决方案
解决方案一:手动处理llvm-build目录
在解压Chromium源码包后,立即删除third_party/llvm-build目录内容。这一方法在某些环境下可以解决早期编译错误。
解决方案二:修改修剪脚本行为
-
应用PR2961中的修改,调整修剪脚本对DEPS包含文件的处理逻辑。
-
在执行prune_binaries.py脚本时添加
--keep-contingent-paths参数,保留必要的依赖路径。
解决方案三:ninja兼容性补丁
针对ninja版本兼容性问题,需要应用特定的补丁来修复路径处理逻辑。这个补丁主要调整了ninja对依赖路径的解析方式。
最佳实践建议
-
编译环境准备:
- 确保使用推荐的构建工具版本
- 预先检查系统依赖是否完整
-
源码处理流程:
- 解压后立即处理llvm-build目录
- 按顺序应用所有必要的补丁
- 使用正确的参数执行修剪脚本
-
问题排查:
- 遇到编译错误时,首先检查错误是否与路径相关
- 确认所有补丁已正确应用
- 检查修剪脚本的执行参数
技术背景
ungoogled-chromium项目通过修剪Chromium源码中与Google服务相关的部分来实现去谷歌化。随着Chromium项目结构的不断变化,修剪机制需要相应调整以保持兼容性。本次问题特别凸显了在以下方面的挑战:
-
构建系统演进:Chromium构建系统越来越复杂,依赖关系更加动态化。
-
跨平台兼容性:不同Linux发行版的基础环境差异可能导致构建行为不一致。
-
自动化修剪:如何在去除不必要组件的同时保留所有构建依赖,是一个持续优化的过程。
通过理解这些技术背景,开发者可以更好地应对未来可能出现的类似编译问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00