在离线环境中编译Wenet项目的ONNX Runtime依赖项
背景介绍
Wenet是一个开源的端到端语音识别工具包,在编译其ONNX Runtime版本时,系统会默认从代码托管平台下载WeTextProcessing工具。然而在某些企业环境或安全要求较高的场景下,服务器可能无法直接访问外部资源,这就需要我们采用离线方式完成依赖项的准备工作。
问题分析
WeTextProcessing是Wenet项目中的一个文本处理工具库,主要用于语音识别后的文本后处理。在标准编译流程中,构建系统会自动通过版本控制命令从远程仓库获取该依赖项。但在离线环境下,这一步骤会导致编译失败。
解决方案
手动下载依赖项
-
准备阶段:在有网络连接的环境中,访问WeTextProcessing的代码托管平台,下载项目源码的ZIP压缩包或使用版本控制命令获取完整仓库。
-
传输文件:将下载好的源码包通过U盘、内部网络或其他安全传输方式复制到目标离线编译机器上。
-
解压放置:将源码包解压到Wenet项目目录下的适当位置,通常可以放在与在线下载相同的目录结构中。
修改构建配置
在某些情况下,可能需要调整Wenet的构建脚本,使其能够识别并使用已经存在的本地WeTextProcessing代码,而不是尝试从网络下载。这通常涉及修改CMakeLists.txt或其他构建配置文件中的相关部分。
注意事项
-
版本兼容性:确保下载的WeTextProcessing版本与当前使用的Wenet版本兼容,避免因版本不匹配导致的编译或运行时错误。
-
依赖完整性:检查WeTextProcessing是否还有其他子依赖项,这些也需要一并离线准备。
-
安全审计:在企业环境中,从外部下载的代码应当经过安全团队的审计和批准,确保不包含恶意代码或违反公司安全政策的组件。
最佳实践
对于长期处于离线环境下的开发,建议:
- 建立内部依赖项仓库,集中管理所有必要的第三方依赖
- 制定规范的依赖项更新流程,定期同步外部项目更新
- 编写自动化脚本,简化离线环境下的依赖项部署过程
通过以上方法,可以有效地解决在离线环境下编译Wenet ONNX Runtime版本时的依赖项获取问题,同时保证开发流程的安全性和可控性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









