Venom v1.3.0-beta.2 版本发布:测试自动化工具的重要更新
Venom 是一个功能强大的测试自动化工具,主要用于执行和管理各种类型的测试用例。它支持多种执行器,可以与不同的系统和协议进行交互,帮助开发者和测试人员构建可靠的自动化测试流程。本次发布的 v1.3.0-beta.2 版本带来了多项功能增强和问题修复,进一步提升了工具的稳定性和可用性。
核心功能改进
Redis 执行器增强
新版本为 Redis 执行器添加了对 ACL(访问控制列表)认证的支持。这意味着 Venom 现在可以更好地与配置了严格访问控制的 Redis 实例进行交互,满足了企业级安全需求。开发者现在可以在测试用例中配置用户名和密码来访问受 ACL 保护的 Redis 服务。
RabbitMQ RPC 支持
RabbitMQ 执行器获得了重大更新,新增了对 RPC(远程过程调用)模式的支持。这一改进使得 Venom 能够更好地测试基于 RabbitMQ 的微服务架构,验证消息的请求-响应模式是否正常工作。测试人员现在可以模拟客户端发送请求并验证服务端的响应是否符合预期。
用户体验优化
测试步骤计数功能
新版本引入了两个有用的内置变量:totalSteps
和 totalTestCases
。这些变量会自动计算测试用例中的步骤总数和测试套件中的用例总数,为测试报告和条件判断提供了更多上下文信息。开发者可以利用这些变量创建更智能的测试逻辑,比如根据步骤数量动态调整断言。
失败日志增强
当测试步骤失败时,Venom 现在会记录该步骤的输出变量值。这一改进大大简化了调试过程,测试人员可以直接在日志中看到失败时的变量状态,而不需要额外添加调试语句或手动检查。
性能与稳定性提升
执行器性能优化
针对用户自定义执行器的性能问题进行了专门优化,显著减少了资源消耗和执行时间。这对于大型测试套件或持续集成环境尤为重要,可以加快整个测试流程的运行速度。
路径处理改进
工具现在能够正确处理绝对路径和相对路径的配置文件引用,避免了因路径处理不当导致的测试失败。这一改进使得测试用例在不同环境间的移植更加可靠。
文档与构建改进
安装体验优化
Windows 平台的安装体验得到改善,二进制文件现在使用标准的 .exe 扩展名,并安装在更符合 Windows 惯例的位置。这使得 Windows 用户能够更自然地使用 Venom。
代码质量提升
项目引入了代码格式化目标,确保代码风格的一致性。同时移除了对旧版插值库的依赖,简化了代码结构,提高了维护性。
总结
Venom v1.3.0-beta.2 版本通过多项功能增强和问题修复,进一步巩固了其作为现代化测试自动化工具的地位。无论是对于 Redis 和 RabbitMQ 等中间件的测试支持,还是用户体验和性能方面的改进,都体现了开发团队对工具质量的持续关注。这些改进使得 Venom 更适合在现代软件开发和持续集成环境中使用,帮助团队构建更可靠的自动化测试流程。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~058CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









