AAChartKit 中正负数堆叠图的显示差异与解决方案
2025-06-11 00:49:34作者:邬祺芯Juliet
堆叠图的基本概念
堆叠图是一种常见的数据可视化方式,它将多个数据系列在同一个图表中叠加显示,便于观察各部分的占比和总量变化。在AAChartKit中,堆叠图主要分为柱状堆叠图(column stacking)和区域堆叠图(area stacking)两种类型。
正负数堆叠图的显示差异
在实际使用AAChartKit绘制堆叠图时,开发者可能会发现一个现象:当数据中包含正负值时,柱状堆叠图和区域堆叠图的显示效果存在显著差异。
柱状堆叠图的特点
柱状堆叠图采用绝对值堆叠方式:
- 正值向上延伸,负值向下延伸
- 每个柱子高度代表该类别所有系列值的绝对值之和
- 正负值在零值基线处相遇
- 直观展示每个系列在各分类下的绝对值大小
区域堆叠图的特点
区域堆叠图采用相对值堆叠方式:
- 每个系列从前一个系列的Y值处开始绘制
- 正值使下一个系列起始位置更高,负值使起始位置更低
- 面积图相互叠加,不在零值基线处汇合
- 更强调数据的累积变化趋势
问题现象分析
在实际项目中,开发者可能会遇到这样的情况:当数据值为3000时,在区域堆叠图中显示高度不足1000。这是因为区域堆叠图的堆叠计算方式导致的。
例如,有两组数据:
- 系列A: [2000, -1000]
- 系列B: [-500, 1500]
在区域堆叠图中:
- 第一点的显示高度 = 2000 + (-500) = 1500
- 第二点的显示高度 = -1000 + 1500 = 500
这就解释了为什么原始数据较大但显示高度较小的现象。
解决方案
针对区域堆叠图中正负数显示异常的问题,可以考虑以下几种解决方案:
1. 数据预处理方法
将数据进行预处理,分离正负值:
- 计算每个分类点的负值总和
- 创建一个虚拟系列,其值为负值总和的相反数
- 将这个虚拟系列堆叠在所有负值系列下方
- 确保堆叠起始位置从零开始
这种方法可以模拟柱状图的堆叠效果,同时保持区域图的视觉连续性。
2. 百分比堆叠方式
使用stacking: 'percent'
配置:
- 将所有系列值转换为相对于总数的百分比
- 填满整个绘图区域
- 适合展示占比关系而非绝对值
注意:这种方法会改变数据的原始比例关系,需根据实际需求谨慎使用。
3. 多Y轴方案
为正值和负值分别创建Y轴:
- 正值系列使用主Y轴
- 负值系列使用次Y轴
- 避免正负值相互抵消
- 保持各自的比例关系
缺点:图表复杂度增加,可能影响可读性。
实现示例
以下是使用AAChartKit配置区域堆叠图的代码示例:
Highcharts.chart('container', {
chart: {
type: 'area'
},
xAxis: {
categories: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun']
},
yAxis: {
gridLineWidth: 1,
tickInterval: 1
},
plotOptions: {
series: {
stacking: 'normal',
threshold: 0
}
},
series: [{
name: 'Series 1',
data: [5, 3, -4, 7, -2, 2]
}, {
name: 'Series 2',
data: [2, -2, -1, 3, 5, -1]
}]
});
最佳实践建议
-
明确可视化目标:如果重点是展示绝对值大小,优先考虑柱状堆叠图;如果关注趋势变化,选择区域堆叠图。
-
数据范围评估:在使用区域堆叠图前,评估数据中正负值的分布情况,避免因相互抵消导致信息丢失。
-
视觉提示:使用不同颜色或图案区分正负区域,增强图表的可读性。
-
辅助说明:在图表旁添加文字说明,解释堆叠计算方式,避免用户误解。
通过理解AAChartKit中堆叠图的工作原理和合理选择解决方案,开发者可以更有效地展示包含正负值的数据集,实现预期的可视化效果。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133