Cucumber-JVM与Surefire插件在测试重试时的XML报告生成问题分析
问题背景
在使用Cucumber-JVM结合Maven Surefire插件进行自动化测试时,当配置了测试重试机制(surefire.rerunFailingTestsCount)并存在多个Scenario Outline时,测试执行报告会出现异常情况。具体表现为测试报告XML文件格式不正确,导致测试结果统计错误,进而可能影响持续集成流程的判断。
问题现象
开发者在测试场景中定义多个Scenario Outline时,例如一个失败的测试用例和一个通过的测试用例,当配置了测试重试参数后运行测试,会出现以下问题:
- 测试报告XML文件格式不完整,可能出现未闭合的标签
- 控制台输出显示"Element name cannot be empty"错误
- 最终测试统计结果显示0个测试被执行,而实际上有多个测试运行
- 在持续集成环境中,错误的测试统计可能导致构建流程错误地继续执行
问题根源分析
经过深入分析,该问题主要由以下几个因素共同导致:
-
测试名称唯一性问题:Surefire插件假设所有测试名称都是唯一的,而Cucumber-JVM生成的Scenario Outline测试名称可能存在重复
-
重试机制与报告生成的冲突:当测试需要重试时,Surefire插件在生成报告时无法正确处理重复的测试名称
-
Scenario Outline的特殊性:Scenario Outline会生成多个相似的测试用例,这些用例在默认命名策略下可能产生相同的显示名称
-
XML报告生成异常:在处理重试测试时,报告生成过程中出现异常,导致XML文件格式损坏
解决方案
针对这一问题,目前有以下几种解决方案:
方案一:使用长命名策略
在Maven配置中指定Cucumber使用长命名策略,确保每个测试用例都有唯一名称:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.5.0</version>
<configuration>
<properties>
<configurationParameters>
cucumber.junit-platform.naming-strategy=long
</configurationParameters>
</properties>
</configuration>
</plugin>
方案二:自定义Scenario Outline名称
在Feature文件中,为Scenario Outline使用参数化名称,确保每个生成的测试用例名称唯一:
Scenario Outline: Failing test <a>
When step 1
Then step a: "<a>"
Examples:
| a |
| string11 |
| string12 |
方案三:使用Pickle命名策略
结合短命名策略和pickle示例名称,配置如下:
<configurationParameters>
cucumber.junit-platform.naming-strategy=short
cucumber.junit-platform.naming-strategy.short.example-name=pickle
</configurationParameters>
最佳实践建议
为了避免类似问题,建议在项目开发中遵循以下实践:
- 始终确保Feature文件中每个Scenario和Scenario Outline都有唯一名称
- 在使用Scenario Outline时,考虑在名称中加入参数占位符
- 在Maven配置中明确指定命名策略
- 定期检查生成的测试报告XML文件格式是否正确
- 考虑升级到最新版本的Surefire插件,以获得更好的兼容性
总结
Cucumber-JVM与Surefire插件在测试重试场景下的兼容性问题主要源于测试名称的唯一性保证。通过合理配置命名策略和遵循最佳实践,可以有效地避免报告生成问题,确保测试结果统计的准确性。对于复杂的测试场景,特别是包含多个Scenario Outline的情况,开发者应当特别注意测试命名的唯一性问题,以保证整个测试流程的可靠性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00