Cucumber-JVM与Surefire插件在测试重试时的XML报告生成问题分析
问题背景
在使用Cucumber-JVM结合Maven Surefire插件进行自动化测试时,当配置了测试重试机制(surefire.rerunFailingTestsCount)并存在多个Scenario Outline时,测试执行报告会出现异常情况。具体表现为测试报告XML文件格式不正确,导致测试结果统计错误,进而可能影响持续集成流程的判断。
问题现象
开发者在测试场景中定义多个Scenario Outline时,例如一个失败的测试用例和一个通过的测试用例,当配置了测试重试参数后运行测试,会出现以下问题:
- 测试报告XML文件格式不完整,可能出现未闭合的标签
- 控制台输出显示"Element name cannot be empty"错误
- 最终测试统计结果显示0个测试被执行,而实际上有多个测试运行
- 在持续集成环境中,错误的测试统计可能导致构建流程错误地继续执行
问题根源分析
经过深入分析,该问题主要由以下几个因素共同导致:
-
测试名称唯一性问题:Surefire插件假设所有测试名称都是唯一的,而Cucumber-JVM生成的Scenario Outline测试名称可能存在重复
-
重试机制与报告生成的冲突:当测试需要重试时,Surefire插件在生成报告时无法正确处理重复的测试名称
-
Scenario Outline的特殊性:Scenario Outline会生成多个相似的测试用例,这些用例在默认命名策略下可能产生相同的显示名称
-
XML报告生成异常:在处理重试测试时,报告生成过程中出现异常,导致XML文件格式损坏
解决方案
针对这一问题,目前有以下几种解决方案:
方案一:使用长命名策略
在Maven配置中指定Cucumber使用长命名策略,确保每个测试用例都有唯一名称:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.5.0</version>
<configuration>
<properties>
<configurationParameters>
cucumber.junit-platform.naming-strategy=long
</configurationParameters>
</properties>
</configuration>
</plugin>
方案二:自定义Scenario Outline名称
在Feature文件中,为Scenario Outline使用参数化名称,确保每个生成的测试用例名称唯一:
Scenario Outline: Failing test <a>
When step 1
Then step a: "<a>"
Examples:
| a |
| string11 |
| string12 |
方案三:使用Pickle命名策略
结合短命名策略和pickle示例名称,配置如下:
<configurationParameters>
cucumber.junit-platform.naming-strategy=short
cucumber.junit-platform.naming-strategy.short.example-name=pickle
</configurationParameters>
最佳实践建议
为了避免类似问题,建议在项目开发中遵循以下实践:
- 始终确保Feature文件中每个Scenario和Scenario Outline都有唯一名称
- 在使用Scenario Outline时,考虑在名称中加入参数占位符
- 在Maven配置中明确指定命名策略
- 定期检查生成的测试报告XML文件格式是否正确
- 考虑升级到最新版本的Surefire插件,以获得更好的兼容性
总结
Cucumber-JVM与Surefire插件在测试重试场景下的兼容性问题主要源于测试名称的唯一性保证。通过合理配置命名策略和遵循最佳实践,可以有效地避免报告生成问题,确保测试结果统计的准确性。对于复杂的测试场景,特别是包含多个Scenario Outline的情况,开发者应当特别注意测试命名的唯一性问题,以保证整个测试流程的可靠性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00