Rustls项目TLS 1.3性能优化实践
在最近对Rustls项目的性能测试中,我们发现了一个值得关注的现象:在高并发场景下,Rustls实现的TLS 1.3协议性能表现不如OpenSSL 1.1.x版本。这一发现促使我们进行了一系列深入测试和分析,最终找到了性能瓶颈并实现了显著的性能提升。
性能测试背景
测试环境采用了96核的高性能服务器,使用g3tiles作为测试工具。初始测试结果显示,Rustls在TLS 1.3协议下的最高请求处理能力(RPS)约为54,000,而OpenSSL 1.1.x版本在相同条件下表现更优。
有趣的是,在TLS 1.2协议测试中,Rustls的表现却非常出色,性能优于TLS 1.3和OpenSSL实现。这表明性能问题可能并非来自Rustls的整体架构,而是特定于TLS 1.3协议的实现细节。
深入分析与测试
我们进行了多轮测试,包括:
- 不同Rustls版本对比(0.21、0.22 ring、0.22 aws-lc)
- 不同编译器测试(gcc与clang)
- 不同核心数量下的性能表现(96核、32核、16核)
测试结果表明,编译器选择和核心数量对性能有一定影响,但都不是根本原因。在32核机器上,Rustls的性能表现略好于96核环境,这提示我们可能存在线程调度或资源竞争的问题。
关键发现与解决方案
通过社区讨论和代码审查,我们发现了两个关键点:
-
会话票据配置:Rustls的ServerConfig中关于会话票据的配置对性能有显著影响。默认配置可能不适合高并发场景。
-
线程调度优化:社区已经注意到多线程环境下的性能问题,并进行了相关优化。例如,将票据数量限制调整为2可以显著提升性能。
性能优化效果
经过上述调整后,Rustls的TLS 1.3性能得到了显著提升。在最新测试中,其性能已经能够满足高并发场景的需求,甚至在某些情况下超越了其他实现。
经验总结
这次性能优化实践给我们带来了几点重要启示:
-
协议版本的选择对性能有重大影响,TLS 1.2和1.3的性能特征可能截然不同。
-
高并发环境下的性能优化需要特别关注线程调度和资源竞争问题。
-
开源社区的协作对于解决复杂性能问题至关重要。
-
性能测试应该覆盖多种硬件配置,以发现潜在的扩展性问题。
Rustls项目团队已经将相关优化纳入主线代码,并计划进一步改进多核环境下的性能表现。对于需要高性能TLS实现的开发者,建议关注这些优化并适时升级到最新版本。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00