Rustls项目TLS 1.3性能优化实践
在最近对Rustls项目的性能测试中,我们发现了一个值得关注的现象:在高并发场景下,Rustls实现的TLS 1.3协议性能表现不如OpenSSL 1.1.x版本。这一发现促使我们进行了一系列深入测试和分析,最终找到了性能瓶颈并实现了显著的性能提升。
性能测试背景
测试环境采用了96核的高性能服务器,使用g3tiles作为测试工具。初始测试结果显示,Rustls在TLS 1.3协议下的最高请求处理能力(RPS)约为54,000,而OpenSSL 1.1.x版本在相同条件下表现更优。
有趣的是,在TLS 1.2协议测试中,Rustls的表现却非常出色,性能优于TLS 1.3和OpenSSL实现。这表明性能问题可能并非来自Rustls的整体架构,而是特定于TLS 1.3协议的实现细节。
深入分析与测试
我们进行了多轮测试,包括:
- 不同Rustls版本对比(0.21、0.22 ring、0.22 aws-lc)
- 不同编译器测试(gcc与clang)
- 不同核心数量下的性能表现(96核、32核、16核)
测试结果表明,编译器选择和核心数量对性能有一定影响,但都不是根本原因。在32核机器上,Rustls的性能表现略好于96核环境,这提示我们可能存在线程调度或资源竞争的问题。
关键发现与解决方案
通过社区讨论和代码审查,我们发现了两个关键点:
-
会话票据配置:Rustls的ServerConfig中关于会话票据的配置对性能有显著影响。默认配置可能不适合高并发场景。
-
线程调度优化:社区已经注意到多线程环境下的性能问题,并进行了相关优化。例如,将票据数量限制调整为2可以显著提升性能。
性能优化效果
经过上述调整后,Rustls的TLS 1.3性能得到了显著提升。在最新测试中,其性能已经能够满足高并发场景的需求,甚至在某些情况下超越了其他实现。
经验总结
这次性能优化实践给我们带来了几点重要启示:
-
协议版本的选择对性能有重大影响,TLS 1.2和1.3的性能特征可能截然不同。
-
高并发环境下的性能优化需要特别关注线程调度和资源竞争问题。
-
开源社区的协作对于解决复杂性能问题至关重要。
-
性能测试应该覆盖多种硬件配置,以发现潜在的扩展性问题。
Rustls项目团队已经将相关优化纳入主线代码,并计划进一步改进多核环境下的性能表现。对于需要高性能TLS实现的开发者,建议关注这些优化并适时升级到最新版本。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00