Kociemba 算法在Python中的实现
2024-09-12 11:35:58作者:宣海椒Queenly
项目介绍
本项目是Herbert Kociemba解决Rubik's Cube的两阶段算法的Python及C语言纯净端口实现。原算法以Java形式存在,并可以在Kociemba's Homepage找到。该算法旨在高效地求解魔方,不保证绝对最短解,但能在极短时间内提供一个“足够好”的解决方案。此实现经过严格测试,适用于各类机器人解谜系统,确保了算法的可靠性。
项目快速启动
安装
首先,你需要安装Python环境(推荐版本2.7或3.3以上)。通过pip可以轻松安装kociemba库:
pip install kociemba
对于Unix系统,可能需要预先安装libffi-dev库来支持C扩展模块。例如,在Debian或Raspbian上运行:
sudo apt-get install libffi-dev
Windows用户也需要安装相应的构建工具,具体步骤可参照微软官方网站说明。
使用示例
安装完成后,你可以通过Python代码直接调用solve()函数来解决魔方。下面是一个简单的例子:
import kociemba
cube_state = "DRLUUBFBRBLURRLRUBLRDDFDLFUFUFFDBRDUBRUFLLFDDBFLUBLRBD"
solution = kociemba.solve(cube_state)
print(solution) # 输出解决魔方的步骤
若要指定解的状态,可以使用第二个参数:
custom_pattern = "BBURUDBFUFFFRRFUUFLULUFUDLRRDBBDBDBLUDDFLLRRBRLLLBRDDF"
specific_solution = kociemba.solve(cube_state, custom_pattern)
print(specific_solution)
应用案例和最佳实践
在机器人技术中,kociemba常被集成到自动解魔方装置中,如FAC System Solver和Meccano Rubik's Shrine。最佳实践包括:
- 在初始化解魔方机器时,利用这个库进行实时状态评估与解算。
- 实施错误处理机制,检查解是否有效或魔方是否已处于解决状态,避免不必要的操作。
- 对于开发者,理解两阶段算法的基本原理有助于优化调用策略,特别是在寻找最快解决方案的应用场景下。
典型生态项目
虽然直接与wangxiaoxiaohan/kociemba.git相关的典型生态项目信息未直接提供,类似的项目通常会被集成进教育软件、机器人竞赛、以及智能玩具开发等领域。例如,结合机器视觉库识别魔方当前状态,然后使用kociemba解算,自动化完成解谜过程,这一流程常见于STEM教育项目和智能家居娱乐解决方案中。
请注意,持续关注社区发展和贡献,可以帮助发现更多围绕这一算法的创新应用和项目。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
443
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
822
397
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
556
111