Kociemba 算法在Python中的实现
2024-09-12 02:06:40作者:宣海椒Queenly
项目介绍
本项目是Herbert Kociemba解决Rubik's Cube的两阶段算法的Python及C语言纯净端口实现。原算法以Java形式存在,并可以在Kociemba's Homepage找到。该算法旨在高效地求解魔方,不保证绝对最短解,但能在极短时间内提供一个“足够好”的解决方案。此实现经过严格测试,适用于各类机器人解谜系统,确保了算法的可靠性。
项目快速启动
安装
首先,你需要安装Python环境(推荐版本2.7或3.3以上)。通过pip可以轻松安装kociemba库:
pip install kociemba
对于Unix系统,可能需要预先安装libffi-dev库来支持C扩展模块。例如,在Debian或Raspbian上运行:
sudo apt-get install libffi-dev
Windows用户也需要安装相应的构建工具,具体步骤可参照微软官方网站说明。
使用示例
安装完成后,你可以通过Python代码直接调用solve()函数来解决魔方。下面是一个简单的例子:
import kociemba
cube_state = "DRLUUBFBRBLURRLRUBLRDDFDLFUFUFFDBRDUBRUFLLFDDBFLUBLRBD"
solution = kociemba.solve(cube_state)
print(solution) # 输出解决魔方的步骤
若要指定解的状态,可以使用第二个参数:
custom_pattern = "BBURUDBFUFFFRRFUUFLULUFUDLRRDBBDBDBLUDDFLLRRBRLLLBRDDF"
specific_solution = kociemba.solve(cube_state, custom_pattern)
print(specific_solution)
应用案例和最佳实践
在机器人技术中,kociemba常被集成到自动解魔方装置中,如FAC System Solver和Meccano Rubik's Shrine。最佳实践包括:
- 在初始化解魔方机器时,利用这个库进行实时状态评估与解算。
- 实施错误处理机制,检查解是否有效或魔方是否已处于解决状态,避免不必要的操作。
- 对于开发者,理解两阶段算法的基本原理有助于优化调用策略,特别是在寻找最快解决方案的应用场景下。
典型生态项目
虽然直接与wangxiaoxiaohan/kociemba.git相关的典型生态项目信息未直接提供,类似的项目通常会被集成进教育软件、机器人竞赛、以及智能玩具开发等领域。例如,结合机器视觉库识别魔方当前状态,然后使用kociemba解算,自动化完成解谜过程,这一流程常见于STEM教育项目和智能家居娱乐解决方案中。
请注意,持续关注社区发展和贡献,可以帮助发现更多围绕这一算法的创新应用和项目。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217