Kociemba 算法在Python中的实现
2024-09-12 16:47:11作者:宣海椒Queenly
项目介绍
本项目是Herbert Kociemba解决Rubik's Cube的两阶段算法的Python及C语言纯净端口实现。原算法以Java形式存在,并可以在Kociemba's Homepage找到。该算法旨在高效地求解魔方,不保证绝对最短解,但能在极短时间内提供一个“足够好”的解决方案。此实现经过严格测试,适用于各类机器人解谜系统,确保了算法的可靠性。
项目快速启动
安装
首先,你需要安装Python环境(推荐版本2.7或3.3以上)。通过pip可以轻松安装kociemba库:
pip install kociemba
对于Unix系统,可能需要预先安装libffi-dev库来支持C扩展模块。例如,在Debian或Raspbian上运行:
sudo apt-get install libffi-dev
Windows用户也需要安装相应的构建工具,具体步骤可参照微软官方网站说明。
使用示例
安装完成后,你可以通过Python代码直接调用solve()函数来解决魔方。下面是一个简单的例子:
import kociemba
cube_state = "DRLUUBFBRBLURRLRUBLRDDFDLFUFUFFDBRDUBRUFLLFDDBFLUBLRBD"
solution = kociemba.solve(cube_state)
print(solution) # 输出解决魔方的步骤
若要指定解的状态,可以使用第二个参数:
custom_pattern = "BBURUDBFUFFFRRFUUFLULUFUDLRRDBBDBDBLUDDFLLRRBRLLLBRDDF"
specific_solution = kociemba.solve(cube_state, custom_pattern)
print(specific_solution)
应用案例和最佳实践
在机器人技术中,kociemba常被集成到自动解魔方装置中,如FAC System Solver和Meccano Rubik's Shrine。最佳实践包括:
- 在初始化解魔方机器时,利用这个库进行实时状态评估与解算。
- 实施错误处理机制,检查解是否有效或魔方是否已处于解决状态,避免不必要的操作。
- 对于开发者,理解两阶段算法的基本原理有助于优化调用策略,特别是在寻找最快解决方案的应用场景下。
典型生态项目
虽然直接与wangxiaoxiaohan/kociemba.git相关的典型生态项目信息未直接提供,类似的项目通常会被集成进教育软件、机器人竞赛、以及智能玩具开发等领域。例如,结合机器视觉库识别魔方当前状态,然后使用kociemba解算,自动化完成解谜过程,这一流程常见于STEM教育项目和智能家居娱乐解决方案中。
请注意,持续关注社区发展和贡献,可以帮助发现更多围绕这一算法的创新应用和项目。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147