在Apple Silicon上使用uv安装Numpy并启用Accelerate加速
2025-05-01 23:33:37作者:余洋婵Anita
在Apple Silicon设备上安装Python科学计算库Numpy时,如何正确配置以使用苹果原生的Accelerate框架而非OpenBLAS,是一个值得关注的技术问题。本文将详细介绍相关背景知识和具体配置方法。
Accelerate与OpenBLAS的性能差异
苹果的Accelerate框架是专为Apple Silicon优化的数学计算库,相比开源的OpenBLAS,在M系列芯片上通常能提供更好的性能和更低的CPU占用率。许多基准测试表明,Accelerate在矩阵运算等线性代数操作上表现更优。
Numpy版本对Accelerate的支持情况
Numpy从1.26.0版本开始正式支持更新后的Accelerate BLAS/LAPACK库。但需要注意的是,自动检测Accelerate的功能是在1.26.1版本中才加入的。这意味着:
- 1.26.0版本虽然支持Accelerate,但需要手动指定
- 1.26.1及更高版本可以自动检测并使用Accelerate
使用uv安装Numpy的正确配置方法
要通过uv工具安装并使用Accelerate加速的Numpy,可以采用以下两种方式:
方法一:安装1.26.0版本并手动指定
uv add numpy==1.26.0 \
--config-setting setup-args=-Dblas=accelerate \
--config-setting setup-args=-Dlapack=accelerate \
--no-binary-package numpy
这个命令明确指定:
- 安装1.26.0版本
- 使用Accelerate作为BLAS和LAPACK后端
- 禁用二进制包,强制从源码构建
方法二:安装1.26.1或更高版本
对于1.26.1及以上版本,Numpy可以自动检测Accelerate,因此只需:
uv add numpy>=1.26.1 --no-binary-package numpy
验证安装结果
安装完成后,可以通过以下Python代码验证Numpy是否正确使用了Accelerate:
import numpy as np
np.__config__.show()
正确配置后,输出中应该显示BLAS后端为"accelerate"而非"openblas"。
常见问题解决
如果在安装依赖Numpy的其他包时遇到BLAS库检测失败的问题,可能是由于:
- 使用了不支持自动检测Accelerate的Numpy版本
- 构建系统错误地寻找OpenBLAS而非Accelerate
解决方法通常是明确指定使用Accelerate并确保使用足够新的Numpy版本。
通过正确配置,开发者可以在Apple Silicon设备上充分利用硬件加速,获得最佳的科学计算性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178