Ragbits项目中的混合向量存储技术详解
混合向量存储概述
在现代信息检索系统中,混合向量存储(Hybrid Vector Store)是一种强大的技术架构,它能够将多种不同类型的向量存储整合到一个统一的搜索索引中。Ragbits项目提供的HybridSearchVectorStore正是这样一种实现,它允许开发者无缝地组合多个向量存储,同时保持单一接口的操作体验。
混合向量存储的核心优势
混合向量存储主要解决了两大类问题场景:
-
多模态数据整合:可以同时处理文本、图像等不同模态的数据。例如,一个商品条目可以同时存储其图片的视觉特征向量和描述文本的语义向量,实现跨模态的统一检索。
-
多类型嵌入融合:支持将稠密嵌入(dense embedding)和稀疏嵌入(sparse embedding)等不同类型的向量表示结合起来,充分利用它们各自的优势提升搜索质量。
多模态混合存储实战
让我们看一个具体的多模态存储实现示例:
from ragbits.core.vector_stores.hybrid import HybridSearchVectorStore
from ragbits.core.vector_stores.in_memory import InMemoryVectorStore
from ragbits.core.embeddings.dense.vertex_multimodal import VertexAIMultimodelEmbedder
# 初始化多模态嵌入生成器
embedder = VertexAIMultimodelEmbedder()
# 创建文本专用向量存储
vector_store_text = InMemoryVectorStore(embedder=embedder,
embedding_type=EmbeddingType.TEXT)
# 创建图像专用向量存储
vector_store_image = InMemoryVectorStore(embedder=embedder,
embedding_type=EmbeddingType.IMAGE)
# 组合成混合向量存储
vector_store_hybrid = HybridSearchVectorStore(vector_store_text, vector_store_image)
在这个例子中,我们创建了两个内存向量存储,分别负责处理文本和图像数据。当向混合存储中添加条目时,系统会自动根据数据类型将其分发到对应的子存储中。
多类型嵌入混合方案
对于需要结合稠密和稀疏嵌入的场景,可以这样实现:
from ragbits.core.embeddings.dense import LiteLLMEmbedder
from ragbits.core.embeddings.sparse.fastembed import FastEmbedSparseEmbedder
# 稠密向量存储
vector_store_dense = InMemoryVectorStore(
embedder=LiteLLMEmbedder(model="text-embedding-3-small")
)
# 稀疏向量存储
vector_store_sparse = InMemoryVectorStore(
embedder=FastEmbedSparseEmbedder(model_name="BAAI/bge-small-en-v1.5")
)
# 混合存储
vector_store_hybrid = HybridSearchVectorStore(vector_store_dense, vector_store_sparse)
这种组合方式特别适合需要兼顾语义匹配和关键词匹配的场景,稠密嵌入擅长捕捉语义相似性,而稀疏嵌入则更擅长处理精确的关键词匹配。
高级混合配置
Ragbits的混合存储支持任意数量和类型的向量存储组合,下面是一个结合三种不同存储引擎的示例:
# 创建三种不同类型的向量存储
chroma_store = ChromaVectorStore(client=EphemeralClient(), ...)
qdrant_store = QdrantVectorStore(client=AsyncQdrantClient(...), ...)
pg_store = PgVectorStore(client=postgres_pool, ...)
# 组合成混合存储
vector_store_hybrid = HybridSearchVectorStore(chroma_store, qdrant_store, pg_store)
这种灵活性使得开发者可以根据业务需求选择最适合的存储引擎组合,例如使用内存存储处理高频查询,用持久化存储保证数据安全。
检索策略详解
混合存储的核心价值在于其检索结果的融合策略,Ragbits提供了三种主要策略:
-
有序混合策略(OrderedHybridRetrivalStrategy):
- 默认策略
- 按分数排序结果
- 支持分数累加或取最高分选项
-
互逆排名融合(ReciprocalRankFusion):
- 基于RRF算法
- 优先考虑在多个存储中排名靠前的结果
- 平衡不同存储的排名差异
-
基于分布的分数融合(DistributionBasedScoreFusion):
- 通过分数标准化实现跨存储比较
- 特别适合不同存储返回分数尺度不一致的场景
配置检索策略示例:
from ragbits.core.vector_stores.hybrid_strategies import DistributionBasedScoreFusion
vector_store_hybrid = HybridSearchVectorStore(
vector_store_text,
vector_store_image,
retrieval_strategy=DistributionBasedScoreFusion(sum_scores=True)
最佳实践建议
-
多模态场景:建议使用有序混合策略,并关闭分数累加,避免图文兼备的条目获得不公平优势。
-
多嵌入类型场景:推荐使用分布融合策略,它能更好地处理稠密和稀疏嵌入的分数分布差异。
-
性能考量:混合存储的查询性能取决于最慢的子存储,建议将高性能存储放在策略列表前面。
-
存储选择:根据数据规模和访问模式选择合适的存储组合,小规模数据可使用全内存方案,大规模数据建议结合持久化存储。
通过合理配置Ragbits的混合向量存储,开发者可以构建出适应各种复杂场景的高效检索系统,充分发挥不同类型向量表示的优势。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00