InstanSeg 开源项目使用教程
2025-04-17 11:35:06作者:凤尚柏Louis
1. 项目介绍
InstanSeg 是一个基于 PyTorch 的细胞和核分割管道,用于荧光和亮场显微镜图像。它具有快速、准确的特点,并且可以完全编译为 TorchScript,便于在 Python 以外的环境中使用,例如直接在 QuPath 中运行。InstanSeg 支持多通道图像处理,无需重新训练或手动干预即可用于新型生物标记物面板。
2. 项目快速启动
首先,确保您的环境中已经安装了 PyTorch。以下命令将安装 InstanSeg 的基础包:
pip install instanseg-torch
如果您需要所有用于训练的依赖项,请使用以下命令:
pip install instanseg-torch[full]
接下来,您可以快速开始使用 InstanSeg:
from instanseg import InstanSeg
# 创建一个针对亮场核分割的 InstanSeg 实例
instanseg_brightfield = InstanSeg(
"brightfield_nuclei",
image_reader="tiffslide",
verbosity=1
)
# 对图像进行分割,并保存结果
labeled_output = instanseg_brightfield.eval(
image="../instanseg/examples/HE_example.tif",
save_output=True,
save_overlay=True
)
如果您想对中间步骤有更多控制,可以按照以下步骤操作:
# 读取图像
image_array, pixel_size = instanseg_brightfield.read_image("../instanseg/examples/HE_example.tif")
# 进行分割
labeled_output, image_tensor = instanseg_brightfield.eval_small_image(
image_array,
pixel_size
)
# 显示结果
instanseg_brightfield.display(image_tensor, labeled_output)
# 使用工具函数显示图像
from instanseg.utils.utils import show_images
show_images(
image_tensor,
labeled_output,
colorbar=False,
titles=["标准化图像", "带分割的图像"]
)
3. 应用案例和最佳实践
下载数据集
要下载公共数据集和示例图像,请按照 instanseg/notebooks/load_datasets.ipynb
中的说明操作。
训练模型
要训练您自己的数据集上的 InstanSeg 模型,请扩展 instanseg/notebooks/load_datasets.ipynb
中的一个模板。
以下是一个训练 InstanSeg 的示例命令:
cd instanseg/scripts
python train.py -data segmentation_dataset.pth -source "TNBC_2018" --num_epochs 250 --experiment_str my_first_instanseg --requested_pixel_size 0.25
测试模型
要测试训练好的模型并获取 F1 指标,请使用以下命令:
python test.py --model_folder my_first_instanseg -test_set Validation --optimize_hyperparameters True
python test.py --model_folder my_first_instanseg -test_set Test --params best_params
模型推理
要使用 InstanSeg 进行模型推理,请运行以下命令:
python inference.py --model_folder my_first_instanseg --image_path ../examples
请将 ../examples
替换为您图像的路径。如果 InstanSeg 无法从图像元数据中读取像素大小,用户需要提供 --pixel_size
参数。
4. 典型生态项目
目前,InstanSeg 已经有自己的 QuPath 扩展,可以在 QuPath 中直接使用。更多关于如何集成和使用 InstanSeg 的生态项目,请参考官方文档和相关社区讨论。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++020Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp课程视频测验中的Tab键导航问题解析8 freeCodeCamp论坛排行榜项目中的错误日志规范要求9 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析10 freeCodeCamp音乐播放器项目中的函数调用问题解析
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
38
72

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

React Native鸿蒙化仓库
C++
195
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
359
12

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71