【亲测免费】 深度学习工具包 DeepLearningToolbox 简介
2026-01-31 04:33:48作者:温玫谨Lighthearted
深度学习工具包(DeepLearningToolbox)是一个基于Matlab的深度学习库。该工具包旨在为研究人员和开发者提供一种学习深层层级模型数据的方法,它受到人脑深层(分层级)架构的启发。请注意,此工具包已经过时且不再维护。目前市面上有更优秀的深度学习工具,例如 Theano、torch 和 tensorflow。
工具包概述
DeepLearningToolbox 包含以下库和功能模块:
NN/:用于前馈反向传播神经网络的库CNN/:用于卷积神经网络的库DBN/:用于深度信念网络的库SAE/:用于堆叠自动编码器的库CAE/:用于卷积自动编码器的库util/:工具包内部使用的实用函数data/:示例代码中使用的数据集tests/:用于验证工具包正常工作的单元测试
使用说明
安装
- 下载资源文件。
- 在Matlab中执行以下命令添加路径:
addpath(genpath('DeepLearnToolbox'));
示例代码
以下是工具包中不同模块的示例代码:
深度信念网络(DBN)
function test_example_DBN
load mnist_uint8;
train_x = double(train_x) / 255;
test_x = double(test_x) / 255;
train_y = double(train_y);
test_y = double(test_y);
% 训练一个含有100个隐藏单元的RBM并可视化其权重
rand(state0);
dbn.sizes = [100];
opts.numepochs = 1;
opts.batchsize = 100;
opts.momentum = 0;
opts.alpha = 1;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
figure; visualize(dbn.rbm{1}.W);
end
堆叠自动编码器(SAE)
function test_example_SAE
load mnist_uint8;
train_x = double(train_x)/255;
test_x = double(test_x)/255;
train_y = double(train_y);
test_y = double(test_y);
% 训练一个含有100个隐藏单元的SDAE并使用它初始化一个FFNN
rand(state0);
sae = saesetup([784 100]);
sae.ae{1}.activation_function = sigm;
sae.ae{1}.learningRate = 1;
sae.ae{1}.inputZeroMaskedFraction = 0.5;
opts.numepochs = 1;
opts.batchsize = 100;
sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:2:end));
end
卷积神经网络(CNN)
function test_example_CNN
load mnist_uint8;
train_x = double(reshape(train_x, 28, 28, 60000))/255;
test_x = double(reshape(test_x, 28, 28, 10000))/255;
train_y = double(train_y);
test_y = double(test_y);
% 训练一个6c-2s-12c-2s的卷积神经网络
rand(state0);
cnn.layers = {
struct('type', 'i');
struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5);
struct('type', 's', 'scale', 2);
struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5);
struct('type', 's', 'scale', 2)
};
cnn = cnnsetup(cnn, train_x, train_y);
opts.alpha = 1;
opts.batchsize = 50;
opts.numepochs = 1;
cnn = cnntrain(cnn, train_x, train_y, opts);
[er, bad] = cnntest(cnn, test_x, test_y);
assert(er < 0.12, 'Too big error');
end
神经网络(NN)
function test_example_NN
load mnist_uint8;
train_x = double(train_x) / 255;
test_x = double(test_x) / 255;
train_y = double(train_y);
test_y = double(test_y);
% 标准化训练数据
[train_x, mu, sigma] = zscore(train_x);
test_x = normalize(test_x, mu, sigma);
% 训练一个简单的神经网络
rand(state0);
nn = nnsetup([784 100 10]);
opts.numepochs = 1;
opts.batchsize = 100;
[nn, L] = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.08, 'Too big error');
end
注意事项
由于该工具包已经过时且不再维护,建议使用目前更先进的深度学习框架,如 Theano、torch 或 tensorflow。在使用此工具包时,请确保参考相关文献和示例代码以了解其用法。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
5分钟掌握ImageSharp色彩矩阵变换:图像色调调整的终极指南3分钟解决Cursor试用限制:go-cursor-help工具全攻略Transmission数据库迁移工具:转移种子状态到新设备如何在VMware上安装macOS?解锁神器Unlocker完整使用指南如何为so-vits-svc项目贡献代码:从提交Issue到创建PR的完整指南Label Studio数据处理管道设计:ETL流程与标注前预处理终极指南突破拖拽限制:React Draggable社区扩展与实战指南如何快速安装 JSON Formatter:让 JSON 数据阅读更轻松的终极指南Element UI表格数据地图:Table地理数据可视化如何快速去除视频水印?免费开源神器「Video Watermark Remover」一键搞定!
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
527
3.72 K
Ascend Extension for PyTorch
Python
334
398
暂无简介
Dart
768
191
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
881
589
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
170
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
749
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246