Longhorn存储卷无法随工作负载迁移的问题分析与解决方案
问题背景
在使用Longhorn v1.7.2版本时,用户发现当工作负载被调度到其他节点时,存储卷无法随之迁移。具体表现为:当工作负载被缩容到0后,虽然可以在UI中强制分离卷并自动重新附加,但如果工作负载被调度到与卷附加节点不同的节点上时,启动会失败。
问题分析
经过深入分析,发现该问题涉及两个关键因素:
-
备份控制器无法找到快照导致卡在pending状态
备份控制器持续尝试备份操作,但由于无法找到对应的快照而不断重试。这些备份操作会持有volumeattachment资源,导致CSI无法附加卷。错误日志显示:"failed to get the snapshot... snapshot not found"。 -
CSI卷附加票证与K8s资源不同步
当用户手动干预删除CSI VolumeAttachment资源并移除其finalizer时,会导致Longhorn内部的csi-*票证与Kubernetes资源不同步。具体表现为Longhorn VolumeAttachment CR中存在csi-*票证,但对应的Kubernetes VolumeAttachment.storage.k8s.io对象已不存在。
解决方案
临时解决方案
-
清理pending状态的备份资源
删除状态为pending且错误信息为"Failed to get the Snapshot..."的Backup资源:kubectl get backup -n longhorn-system -o json | \ jq '.items[] | select(.status.state == "pending" and (.status.message | contains("Failed to get the Snapshot"))) | .metadata.name' | \ xargs -I {} kubectl delete backup {} -n longhorn-system -
修复不同步的卷附加票证
对于已经出现不同步的情况,可执行以下步骤:- 缩容工作负载
- 通过UI强制分离卷或直接编辑VolumeAttachment CR删除孤立的csi-*票证
- 重新扩容工作负载
长期解决方案
Longhorn团队已经意识到这个问题,并在后续版本中进行了改进:
- 增加了备份操作的最大重试次数限制
- 改进了快照创建失败时的处理逻辑
- 加强了CSI卷附加票证与Kubernetes资源的状态同步机制
最佳实践建议
- 避免手动删除CSI VolumeAttachment资源或移除其finalizer
- 定期检查并清理失败的备份任务
- 在升级Longhorn版本前,确保所有备份操作已完成
- 对于关键业务卷,考虑设置适当的备份策略和保留策略
总结
Longhorn存储卷无法随工作负载迁移的问题主要源于备份操作失败导致的资源锁定和手动干预造成的状态不一致。通过清理无效的备份资源和修复不同步的卷附加票证,可以有效解决该问题。同时,建议用户遵循最佳实践以避免类似问题的发生。
Longhorn团队正在持续改进系统的稳定性和可靠性,后续版本将提供更完善的错误处理和状态同步机制,为用户提供更优质的存储体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00