Microsoft.Extensions.AI.OpenAI 项目中 JSON Schema 严格模式支持解析
2025-06-27 12:14:55作者:薛曦旖Francesca
背景介绍
在人工智能应用开发中,JSON Schema 是一种常用的数据格式规范工具,它能够定义JSON数据的结构和约束条件。Microsoft.Extensions.AI.OpenAI 是一个.NET生态中用于集成OpenAI功能的扩展库,它为开发者提供了便捷的AI服务接入方式。
问题发现
在9.1.0-preview.1.25064.3版本中,开发者发现当使用OpenAIChatClient与Azure OpenAI服务交互时,虽然支持通过JSON Schema来约束AI模型的输出格式,但缺少对"strict"参数的支持。这个参数对于确保AI输出严格符合Schema定义至关重要。
技术细节
在OpenAI的API设计中,JSON Schema响应格式可以配置三个关键参数:
- schema_name - 模式名称标识
- schema - 实际的JSON Schema定义
- strict - 是否严格模式(控制是否允许不符合Schema的输出)
原实现中,当开发者通过ChatResponseFormat.ForJsonSchema方法创建响应格式时,虽然正确传递了schema_name和schema参数,但strict参数被默认设置为null,而不是更安全的true值。
解决方案
开发团队已经在新版本中修复了这个问题。现在代码实现如下:
if (options.ResponseFormat is ChatResponseFormatText)
{
result.ResponseFormat = OpenAI.Chat.ChatResponseFormat.CreateTextFormat();
}
else if (options.ResponseFormat is ChatResponseFormatJson jsonFormat)
{
result.ResponseFormat = jsonFormat.Schema is { } jsonSchema
? OpenAI.Chat.ChatResponseFormat.CreateJsonSchemaFormat(
jsonFormat.SchemaName ?? "json_schema",
BinaryData.FromString(jsonSchema),
jsonFormat.SchemaDescription)
: OpenAI.Chat.ChatResponseFormat.CreateJsonObjectFormat();
}
最佳实践建议
对于需要严格JSON Schema验证的场景,开发者应该:
- 确保使用最新版本的Microsoft.Extensions.AI.OpenAI库
- 明确检查AI输出是否符合预期格式
- 对于关键业务逻辑,建议添加额外的验证层
- 在开发阶段启用严格模式以尽早发现问题
总结
JSON Schema的严格模式支持是确保AI输出质量的重要机制。Microsoft.Extensions.AI.OpenAI库的这次改进,使得.NET开发者能够更好地控制AI模型的输出行为,特别是在需要精确数据格式的企业级应用中。开发者应当了解这一特性,并在适当场景中加以利用。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0372Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
207
2.19 K

暂无简介
Dart
516
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193