Benchmark_VAE项目中RHVAE训练出现NaN问题的分析与解决
2025-07-06 01:25:20作者:滕妙奇
问题背景
在使用Benchmark_VAE项目中的RHVAE(Riemannian Hamiltonian VAE)模型进行MNIST数据集训练时,用户遇到了训练过程中出现NaN(非数值)值的问题。具体表现为在训练进行到第21个epoch时,模型输出的潜在变量z中出现了NaN值,导致程序抛出异常。
问题现象
训练过程中,模型在计算潜在空间的多变量正态分布对数概率时,检测到潜在变量z包含NaN值。错误信息显示,期望的潜在变量应该是实数范围内的有效数值,但实际得到了包含NaN的张量。
技术分析
RHVAE是一种基于黎曼流形和哈密顿动力学的变分自编码器变体。在训练过程中,它使用leapfrog积分方法来模拟哈密顿动力学,这涉及到多次梯度计算和参数更新。出现NaN值通常表明在优化过程中数值不稳定,可能的原因包括:
- 学习率设置过高,导致参数更新步长过大
- 梯度爆炸问题
- 数值计算中的不稳定操作(如除以接近零的数)
- 损失函数设计导致的数值不稳定
解决方案
通过调整学习率可以有效解决这个问题。具体来说:
- 降低初始学习率可以防止训练初期的参数剧烈变化
- 使用学习率调度器可以在训练过程中动态调整学习率
- 添加梯度裁剪可以防止梯度爆炸
在实际应用中,用户通过调整学习率参数成功解决了NaN值问题,使训练能够正常进行。
预防措施
为了避免类似问题,建议在训练RHVAE等复杂VAE变体时:
- 从较小的学习率开始尝试(如1e-4)
- 监控训练过程中的损失值和梯度范数
- 实现梯度裁剪机制
- 使用更稳定的优化器(如AdamW)
- 考虑使用混合精度训练来增强数值稳定性
总结
RHVAE等高级VAE模型由于其复杂的动力学模拟过程,对训练参数设置更为敏感。当遇到NaN问题时,学习率调整通常是首要考虑的解决方案。通过合理的超参数设置和训练策略,可以确保模型训练的稳定性和收敛性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134