Cloud-init与MAAS集成中的OVS网络配置问题分析与解决方案
问题背景
在Ubuntu 24.04系统中使用MAAS部署带有OVS(Open vSwitch)桥接配置的机器时,用户遇到了cloud-init无法正确配置网络的问题。具体表现为部署过程中MAAS无限期等待机器就绪,导致部署失败。该问题在Ubuntu 22.04系统中不存在,但在24.04系统中普遍出现。
问题现象分析
通过对比22.04和24.04系统的部署日志,可以观察到关键差异:
-
服务启动顺序不同:
- 在22.04系统中,服务启动顺序为:cloud-init本地阶段→systemd-networkd→OVS相关服务→网络就绪→cloud-init网络阶段
- 在24.04系统中,服务启动顺序变为:cloud-init本地阶段→systemd-networkd→部分OVS服务→cloud-init网络阶段→网络就绪
-
网络状态检测差异:
- 24.04系统中,
systemd-networkd-wait-online服务被配置为仅等待物理网卡(enp5s0)的载波状态,而忽略了OVS桥接(br0)的状态 - 这导致cloud-init网络阶段启动时,实际的桥接网络尚未就绪
- 24.04系统中,
根本原因
问题根源在于Netplan的设计变更。在24.04系统中,Netplan默认将桥接接口标记为"optional"(可选),这导致systemd-networkd-wait-online服务不会等待这些接口就绪。具体表现为:
- Netplan生成的
systemd-networkd-wait-online服务配置中,明确指定了只检测物理网卡的状态参数(-i enp5s0:carrier) - 由于OVS桥接(br0)没有被包含在等待列表中,网络实际上并未完全就绪时cloud-init就开始执行网络配置阶段
解决方案
针对此问题,有两种可行的解决方案:
方案一:修改Netplan配置
在Netplan配置中为OVS桥接明确添加optional: false参数,强制系统等待该接口就绪:
network:
bridges:
br0:
optional: false
addresses:
- 10.0.2.122/24
# 其他配置保持不变
此方案已被MAAS团队采纳,并在MAAS 3.4.9、3.5.5和3.6.1版本中实现。
方案二:调整服务依赖关系
对于无法修改Netplan配置的情况,可以手动调整服务依赖关系:
- 确保
cloud-init.service在systemd-networkd-wait-online.service之后启动 - 或者修改
systemd-networkd-wait-online.service的配置,使其包含对桥接接口的等待
技术建议
对于使用MAAS部署Ubuntu系统的用户,建议:
- 升级到包含修复的MAAS版本(3.4.9、3.5.5或3.6.1及以上)
- 如果暂时无法升级,可以手动在部署后修改Netplan配置并重新应用
- 对于自定义镜像,建议在镜像构建阶段就包含正确的Netplan配置
更深层次的系统理解
这个问题实际上反映了现代Linux系统中网络配置复杂性的增加。随着虚拟化网络技术(如OVS)的普及,传统的网络就绪检测机制需要相应调整。在早期版本中,系统通常只需要等待物理网卡就绪,但在使用高级网络功能(如OVS、桥接、绑定等)时,这种简化假设就不再成立。
Netplan和systemd-networkd的这次变更实际上是为了更好地支持复杂网络场景,但同时也要求管理员更明确地表达他们的网络依赖关系。通过将接口显式标记为"非可选"(optional: false),系统可以更准确地理解哪些网络组件对系统正常运行至关重要。
总结
Cloud-init与MAAS在Ubuntu 24.04中的OVS网络配置问题是一个典型的系统组件交互问题。通过理解Netplan、systemd-networkd和cloud-init之间的协作机制,我们不仅可以解决当前问题,还能更好地设计和管理复杂的网络部署场景。这个案例也提醒我们,在系统升级时需要特别注意组件间依赖关系的变化,特别是在网络配置这种基础而关键的领域。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00