Prettyplotlib 项目使用教程
2024-09-20 22:12:10作者:鲍丁臣Ursa
1. 项目目录结构及介绍
Prettyplotlib 是一个用于美化 Matplotlib 图表的 Python 库。以下是项目的目录结构及其介绍:
prettyplotlib/
├── docs/
│ ├── examples_with_code.md
│ └── ...
├── prettyplotlib/
│ ├── __init__.py
│ ├── bar.py
│ ├── boxplot.py
│ ├── colors.py
│ ├── fill_between.py
│ ├── hist.py
│ ├── pcolormesh.py
│ ├── scatter.py
│ └── ...
├── tests/
│ ├── test_bar.py
│ ├── test_boxplot.py
│ ├── test_fill_between.py
│ ├── test_hist.py
│ ├── test_pcolormesh.py
│ ├── test_scatter.py
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
目录结构介绍
- docs/: 包含项目的文档,特别是
examples_with_code.md
文件,其中提供了使用 Prettyplotlib 绘制各种图表的示例代码。 - prettyplotlib/: 核心代码目录,包含各种图表类型的实现文件,如
bar.py
,boxplot.py
,scatter.py
等。 - tests/: 包含项目的单元测试文件,确保每个图表类型的功能正常。
- .gitignore: Git 忽略文件,指定哪些文件或目录不需要被版本控制。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文件,包含项目的基本信息、安装方法和使用说明。
- requirements.txt: 项目依赖的 Python 包列表。
- setup.py: 用于安装项目的脚本文件。
2. 项目的启动文件介绍
Prettyplotlib 是一个库,没有传统的“启动文件”。用户通常会在自己的 Python 脚本或 Jupyter Notebook 中导入并使用 Prettyplotlib 的功能。以下是一个简单的示例:
import prettyplotlib as ppl
import numpy as np
import matplotlib.pyplot as plt
# 生成数据
x = np.arange(0, 10, 0.1)
y = np.sin(x)
# 使用 Prettyplotlib 绘制图表
ppl.plot(x, y)
# 显示图表
plt.show()
在这个示例中,prettyplotlib
被导入并用于绘制一个简单的正弦波图表。
3. 项目的配置文件介绍
Prettyplotlib 没有专门的配置文件,但其行为可以通过 Matplotlib 的配置文件进行调整。Matplotlib 的配置文件通常位于用户的主目录下,文件名为 .matplotlibrc
。用户可以通过编辑这个文件来调整图表的默认样式、字体、颜色等。
例如,可以在 .matplotlibrc
文件中添加以下内容来调整图表的默认字体:
font.family: sans-serif
font.sans-serif: Arial, Helvetica, sans-serif
通过这种方式,用户可以自定义 Prettyplotlib 生成的图表的外观。
总结
Prettyplotlib 是一个强大的工具,可以帮助用户轻松创建美观的 Matplotlib 图表。通过了解项目的目录结构、启动方式和配置方法,用户可以更好地利用这个库来满足自己的数据可视化需求。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105