Prettyplotlib 项目使用教程
2024-09-20 07:57:23作者:鲍丁臣Ursa
1. 项目目录结构及介绍
Prettyplotlib 是一个用于美化 Matplotlib 图表的 Python 库。以下是项目的目录结构及其介绍:
prettyplotlib/
├── docs/
│ ├── examples_with_code.md
│ └── ...
├── prettyplotlib/
│ ├── __init__.py
│ ├── bar.py
│ ├── boxplot.py
│ ├── colors.py
│ ├── fill_between.py
│ ├── hist.py
│ ├── pcolormesh.py
│ ├── scatter.py
│ └── ...
├── tests/
│ ├── test_bar.py
│ ├── test_boxplot.py
│ ├── test_fill_between.py
│ ├── test_hist.py
│ ├── test_pcolormesh.py
│ ├── test_scatter.py
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt
└── setup.py
目录结构介绍
- docs/: 包含项目的文档,特别是
examples_with_code.md文件,其中提供了使用 Prettyplotlib 绘制各种图表的示例代码。 - prettyplotlib/: 核心代码目录,包含各种图表类型的实现文件,如
bar.py,boxplot.py,scatter.py等。 - tests/: 包含项目的单元测试文件,确保每个图表类型的功能正常。
- .gitignore: Git 忽略文件,指定哪些文件或目录不需要被版本控制。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文件,包含项目的基本信息、安装方法和使用说明。
- requirements.txt: 项目依赖的 Python 包列表。
- setup.py: 用于安装项目的脚本文件。
2. 项目的启动文件介绍
Prettyplotlib 是一个库,没有传统的“启动文件”。用户通常会在自己的 Python 脚本或 Jupyter Notebook 中导入并使用 Prettyplotlib 的功能。以下是一个简单的示例:
import prettyplotlib as ppl
import numpy as np
import matplotlib.pyplot as plt
# 生成数据
x = np.arange(0, 10, 0.1)
y = np.sin(x)
# 使用 Prettyplotlib 绘制图表
ppl.plot(x, y)
# 显示图表
plt.show()
在这个示例中,prettyplotlib 被导入并用于绘制一个简单的正弦波图表。
3. 项目的配置文件介绍
Prettyplotlib 没有专门的配置文件,但其行为可以通过 Matplotlib 的配置文件进行调整。Matplotlib 的配置文件通常位于用户的主目录下,文件名为 .matplotlibrc。用户可以通过编辑这个文件来调整图表的默认样式、字体、颜色等。
例如,可以在 .matplotlibrc 文件中添加以下内容来调整图表的默认字体:
font.family: sans-serif
font.sans-serif: Arial, Helvetica, sans-serif
通过这种方式,用户可以自定义 Prettyplotlib 生成的图表的外观。
总结
Prettyplotlib 是一个强大的工具,可以帮助用户轻松创建美观的 Matplotlib 图表。通过了解项目的目录结构、启动方式和配置方法,用户可以更好地利用这个库来满足自己的数据可视化需求。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878