Apache APISIX 指标过期特性缺陷分析与修复方案
2025-05-15 14:42:12作者:邬祺芯Juliet
背景介绍
Apache APISIX 作为一款高性能的云原生API网关,其监控指标收集功能对于系统运维至关重要。在3.9.0版本中,APISIX引入了基于nginx-lua-prometheus库的指标过期特性,旨在优化内存使用。然而,该特性在实际运行中存在一个关键缺陷,可能导致部分指标数据丢失。
问题现象
当使用APISIX的Prometheus插件并开启指标过期功能后,会出现以下现象:
- 首次访问API时,相关路由指标能正常收集和展示
- 等待指标过期时间(如10秒)后再次访问相同API
- 此时通过/metrics端点查询指标时,发现部分已重新生成的指标数据丢失
技术原理分析
问题的根源在于nginx-lua-prometheus库的指标缓存管理机制:
-
指标缓存机制:库内部使用self.lookup缓存指标的完整名称映射,当缓存大小达到上限(self.lookup_size >= self.lookup_max_size)时会进行重置。
-
首次添加流程:
- 指标首次添加时,由于缓存中不存在,会执行以下操作:
- 设置映射缓存
- 调用self._key_index:add()保存键索引关系
- 设置过期时间(self.exptime)
- 指标首次添加时,由于缓存中不存在,会执行以下操作:
-
过期后问题:
- 过期时间到达后,self._key_index.keys[i]的值变为null
- 当相同指标再次被添加时:
- 由于缓存(self.lookup)中仍存在映射,直接返回完整名称
- 不再执行self._key_index:add()
- 导致self._key_index.keys列表数据缺失
-
指标输出问题:
- 指标输出时使用的self._key_index:list()方法会遍历self._key_index.keys列表
- 由于该列表已缺失数据,导致指标无法正常输出
解决方案
修复方案主要围绕缓存一致性进行优化:
- 缓存同步机制:确保self.lookup缓存与self._key_index.keys的数据一致性
- 过期处理优化:在指标过期时,同时清理相关缓存
- 重新添加逻辑:当过期指标重新添加时,强制更新索引关系
核心修复点包括:
- 在指标过期时同步清理lookup缓存
- 在指标重新添加时检查并重建索引
- 优化缓存失效策略
验证方法
可以通过以下步骤验证修复效果:
- 配置APISIX路由和全局规则,启用Prometheus插件并设置较短过期时间(如10秒)
- 首次访问API并确认指标收集正常
- 等待过期时间后再次访问相同API
- 检查指标端点确认所有指标正常显示
示例测试命令:
# 首次访问
curl "127.0.0.1:9080/hello" && sleep 12 && curl "127.0.0.1:9091/apisix/prometheus/metrics" | grep 'route'
# 再次访问
curl "127.0.0.1:9080/hello" && sleep 2 && curl "127.0.0.1:9091/apisix/prometheus/metrics" | grep 'route'
总结
指标监控是API网关的重要功能,确保指标数据的完整性和准确性对系统运维至关重要。本次修复解决了APISIX在特定场景下的指标丢失问题,提升了监控系统的可靠性。建议使用APISIX 3.9.0及以上版本并启用指标过期功能的用户及时应用此修复。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355