Elasticsearch Learning to Rank 项目教程
2024-09-21 14:36:48作者:裘晴惠Vivianne
1. 项目的目录结构及介绍
Elasticsearch Learning to Rank 项目的目录结构如下:
elasticsearch-learning-to-rank/
├── LICENSE
├── README.md
├── build.gradle
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradle.properties
├── gradlew
├── gradlew.bat
├── settings.gradle
├── src
│ ├── main
│ │ ├── java
│ │ │ └── com
│ │ │ └── o19s
│ │ │ └── elasticsearch
│ │ │ └── learningto rank
│ │ │ ├── action
│ │ │ ├── features
│ │ │ ├── model
│ │ │ ├── query
│ │ │ ├── rest
│ │ │ └── util
│ │ └── resources
│ │ └── es
│ │ └── plugin
│ │ └── learningto rank
│ │ ├── action
│ │ ├── features
│ │ ├── model
│ │ ├── query
│ │ ├── rest
│ │ └── util
│ └── test
│ ├── java
│ │ └── com
│ │ └── o19s
│ │ └── elasticsearch
│ │ └── learningto rank
│ │ ├── action
│ │ ├── features
│ │ ├── model
│ │ ├── query
│ │ ├── rest
│ │ └── util
│ └── resources
│ └── es
│ └── plugin
│ └── learningto rank
│ ├── action
│ ├── features
│ ├── model
│ ├── query
│ ├── rest
│ └── util
└── tools
└── ranklib
└── RankLib.jar
目录结构介绍
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- build.gradle: Gradle 构建脚本。
- gradle: Gradle 包装器相关文件。
- src/main/java: 项目的主要 Java 源代码。
- src/main/resources: 项目的主要资源文件。
- src/test/java: 项目的测试代码。
- src/test/resources: 项目的测试资源文件。
- tools/ranklib: 包含 RankLib 工具的 JAR 文件,用于模型训练。
2. 项目的启动文件介绍
项目的启动文件主要是 build.gradle 和 gradlew 文件。
build.gradle
build.gradle 是 Gradle 构建脚本,定义了项目的依赖、任务和配置。通过运行 ./gradlew build 命令,可以编译和打包项目。
gradlew
gradlew 是 Gradle 包装器脚本,用于在不同环境中一致地运行 Gradle 构建。通过运行 ./gradlew 命令,可以执行构建任务。
3. 项目的配置文件介绍
项目的配置文件主要位于 src/main/resources/es/plugin/learningto rank 目录下。
配置文件介绍
- action: 定义了与操作相关的配置。
- features: 定义了特征相关的配置。
- model: 定义了模型相关的配置。
- query: 定义了查询相关的配置。
- rest: 定义了 REST API 相关的配置。
- util: 定义了工具类相关的配置。
这些配置文件用于定义 Elasticsearch Learning to Rank 插件的行为和功能。
以上是 Elasticsearch Learning to Rank 项目的目录结构、启动文件和配置文件的介绍。通过这些内容,您可以更好地理解和使用该项目。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
485
3.59 K
Ascend Extension for PyTorch
Python
297
329
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
260
111
暂无简介
Dart
735
177
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
861
456
React Native鸿蒙化仓库
JavaScript
294
343
仓颉编译器源码及 cjdb 调试工具。
C++
148
880