首页
/ LLMs-from-scratch项目中Embedding层与Linear层的权重初始化分析

LLMs-from-scratch项目中Embedding层与Linear层的权重初始化分析

2025-05-01 16:07:03作者:邵娇湘

在深度学习模型构建过程中,Embedding层和Linear层是两种常用的神经网络层类型。rasbt的LLMs-from-scratch项目通过实践展示了这两种层的权重初始化特性。

Embedding层与Linear层的权重对比

Embedding层通常用于将离散的索引值映射到连续的向量空间,而Linear层则实现输入数据的线性变换。在PyTorch框架中,这两种层虽然功能不同,但都包含可训练的参数矩阵。

权重初始化的随机性

在LLMs-from-scratch项目的示例代码中,作者设置了随机种子为123,然后创建了一个Linear层:

torch.manual_seed(123)
linear = torch.nn.Linear(num_idx, out_dim, bias=False)

执行这段代码后,PyTorch会自动初始化Linear层的权重矩阵。这个权重矩阵的大小为5×4(假设num_idx=5,out_dim=4),其值来自于特定的随机分布。

权重矩阵的特性

观察初始化后的权重矩阵,我们可以发现几个特点:

  1. 数值范围在-0.5到0.5之间,这是PyTorch默认的初始化范围
  2. 每个元素都是随机生成的,但由于设置了随机种子,结果可复现
  3. 矩阵的requires_grad属性为True,表示这些参数将在训练过程中被优化

与Embedding层的比较

虽然代码中没有展示Embedding层的初始化,但值得注意的是:

  1. Embedding层的权重矩阵形状与Linear层类似
  2. 两者都使用随机初始化,但具体分布可能不同
  3. Embedding层专为离散输入设计,而Linear层适用于连续输入

实际应用中的考虑

在实际构建语言模型时,理解这些层的初始化特性很重要:

  1. 初始化范围会影响模型训练的稳定性
  2. 随机种子的设置可确保实验的可重复性
  3. 对于大型语言模型,可能需要特定的初始化策略

通过分析这个简单的示例,我们可以更好地理解神经网络底层参数的初始化机制,为构建更复杂的语言模型打下基础。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8