Apollo Client 中 useSuspenseQuery 的缓存与网络请求行为分析
在最新版本的 Apollo Client 3.13.1 中,开发团队对 useSuspenseQuery 钩子的行为进行了重要调整,特别是在配合 cache-and-network 获取策略使用时,这一变化对开发者如何处理数据获取和用户界面展示产生了显著影响。
行为变更背景
useSuspenseQuery 是 Apollo Client 提供的 React Suspense 集成钩子,它允许开发者在数据加载时展示备用的加载状态(fallback UI)。在 3.13.1 版本之前,当使用 cache-and-network 获取策略并调用 refetch 方法时,即使缓存中已有数据,界面也不会显示 Suspense 的 fallback UI。
这一行为在 3.13.1 版本中被修正,现在调用 refetch 会正确触发 Suspense fallback 的显示。这一变更源于开发团队发现原先的实现存在测试覆盖不足的问题,导致预期行为与实际表现不一致。
技术实现细节
cache-and-network 获取策略的设计初衷是:
- 首先从缓存中立即返回可用数据
- 同时发起网络请求获取最新数据
- 当网络请求完成后,用新数据更新缓存和UI
在重新获取数据(refetch)的场景下,正确的行为应该是:
- 触发新的网络请求
- 在请求期间显示加载状态
- 请求完成后更新UI
开发者应对方案
对于不希望 refetch 时显示加载状态的场景,Apollo Client 团队推荐使用 React 的 startTransition API:
import { startTransition } from 'react';
// 在组件中
const handleRefresh = () => {
startTransition(() => {
refetch();
});
};
这种方法可以保持当前UI可见,同时在后台更新数据,避免突兀的加载状态切换,提供更流畅的用户体验。
最佳实践建议
-
明确数据获取策略:根据应用场景选择合适的 fetchPolicy,
cache-first适合数据变化不频繁的场景,cache-and-network适合需要实时性的场景 -
合理使用过渡更新:对于非关键数据的更新,考虑使用
startTransition保持UI稳定 -
错误处理:即使使用 Suspense,也应考虑添加错误边界来捕获可能的请求错误
-
性能优化:对于频繁更新的数据,可以结合
pollInterval实现定期刷新,而不是依赖手动 refetch
这一变更体现了 Apollo Client 对数据一致性原则的坚持,虽然短期内可能需要开发者调整代码,但长期来看有助于构建更可预测的应用程序行为。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00