基于Azure AI的文件搜索项目实战指南
2025-06-19 08:42:06作者:姚月梅Lane
项目概述
Azure AI文件搜索项目展示了如何将大型语言模型(LLMs)与外部数据源检索能力相结合,从而显著提升应用程序的响应质量。该项目实现了一个智能搜索系统,当用户提出问题时,系统会先搜索相关文档(以嵌入向量形式存储),然后利用这些上下文信息生成更准确、更相关的回答。
核心技术原理
嵌入向量与语义搜索
该系统采用了先进的嵌入向量技术,将文本内容转换为数值表示。具体实现中:
- 使用OpenAI的
text-embedding-3-small模型生成100维的嵌入向量 - 将文档内容按每10个句子为一个块进行分割
- 每个文本块被转换为对应的嵌入向量
- 这些向量存储在CSV文件中(
embeddings.csv)
混合搜索机制
系统支持两种搜索方式的混合使用:
- 语义搜索:利用LLM理解查询的语义含义
- 向量相似度搜索:基于嵌入向量的数学相似度计算
这种混合方法确保了搜索结果既符合语义相关性,又能保持数学上的相似性。
自定义数据集集成
要将自己的数据集集成到系统中,可以使用提供的SearchIndexManager工具类。以下是关键步骤:
1. 初始化搜索索引管理器
from .api.search_index_manager import SearchIndexManager
search_index_manager = SearchIndexManager(
endpoint=your_search_endpoint,
credential=your_credentials,
index_name=your_index_name,
dimensions=100,
model=your_embedding_model,
deployment_name=your_embedding_model,
embedding_endpoint=your_search_endpoint_url,
embed_api_key=embed_api_key,
embedding_client=embedding_client
)
2. 构建嵌入向量文件
search_index_manager.build_embeddings_file(
input_directory=input_directory,
output_file=output_directory,
sentences_per_embedding=10
)
参数说明:
sentences_per_embedding:控制每个嵌入向量包含的句子数量,数值越大,搜索时考虑的上下文范围越广input_directory:存放原始数据文件的目录output_directory:生成的嵌入向量文件输出路径
部署配置指南
要启用AI搜索功能,需要设置以下环境变量:
PowerShell环境
$env:USE_AZURE_AI_SEARCH_SERVICE="true"
$env:AZURE_AI_SEARCH_INDEX_NAME="index_sample"
$env:AZURE_AI_EMBED_DEPLOYMENT_NAME="text-embedding-3-small"
Bash环境
export USE_AZURE_AI_SEARCH_SERVICE="true"
export AZURE_AI_SEARCH_INDEX_NAME="index_sample"
export AZURE_AI_EMBED_DEPLOYMENT_NAME="text-embedding-3-small"
CMD环境
set USE_AZURE_AI_SEARCH_SERVICE=true
set AZURE_AI_SEARCH_INDEX_NAME=index_sample
set AZURE_AI_EMBED_DEPLOYMENT_NAME=text-embedding-3-small
环境变量说明:
USE_AZURE_AI_SEARCH_SERVICE:启用/禁用索引搜索功能(默认禁用)AZURE_AI_SEARCH_INDEX_NAME:指定使用的Azure搜索索引名称AZURE_AI_EMBED_DEPLOYMENT_NAME:指定用于创建嵌入向量的模型部署名称
搜索索引管理
创建索引
系统提供了编程方式创建索引的方法:
# 创建Azure搜索索引(如果不存在)
await search_index_manager.create_index(raise_on_error=True)
# 上传嵌入向量到索引
await search_index_manager.upload_documents(embeddings_path)
注意事项:
- 如果索引已存在,系统会直接使用现有索引
- 仅在初始化
SearchIndexManager时未提供维度信息的情况下,才需要vector_index_dimensions参数 - 索引必须包含"title"字段,用于提供正确的引用信息
最佳实践建议
- 数据预处理:确保输入数据经过适当的清洗和格式化
- 嵌入向量维度:根据数据复杂度选择合适的维度大小
- 块大小调整:通过实验确定最佳的
sentences_per_embedding值 - 性能监控:定期检查搜索响应时间和准确性
- 索引更新:建立定期更新索引的机制以保持数据新鲜度
通过本项目的实现,开发者可以快速构建一个结合了大型语言模型和精确文档检索能力的智能搜索系统,显著提升应用程序的信息检索质量和用户体验。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328