基于Azure AI的文件搜索项目实战指南
2025-06-19 15:05:37作者:姚月梅Lane
项目概述
Azure AI文件搜索项目展示了如何将大型语言模型(LLMs)与外部数据源检索能力相结合,从而显著提升应用程序的响应质量。该项目实现了一个智能搜索系统,当用户提出问题时,系统会先搜索相关文档(以嵌入向量形式存储),然后利用这些上下文信息生成更准确、更相关的回答。
核心技术原理
嵌入向量与语义搜索
该系统采用了先进的嵌入向量技术,将文本内容转换为数值表示。具体实现中:
- 使用OpenAI的
text-embedding-3-small模型生成100维的嵌入向量 - 将文档内容按每10个句子为一个块进行分割
- 每个文本块被转换为对应的嵌入向量
- 这些向量存储在CSV文件中(
embeddings.csv)
混合搜索机制
系统支持两种搜索方式的混合使用:
- 语义搜索:利用LLM理解查询的语义含义
- 向量相似度搜索:基于嵌入向量的数学相似度计算
这种混合方法确保了搜索结果既符合语义相关性,又能保持数学上的相似性。
自定义数据集集成
要将自己的数据集集成到系统中,可以使用提供的SearchIndexManager工具类。以下是关键步骤:
1. 初始化搜索索引管理器
from .api.search_index_manager import SearchIndexManager
search_index_manager = SearchIndexManager(
endpoint=your_search_endpoint,
credential=your_credentials,
index_name=your_index_name,
dimensions=100,
model=your_embedding_model,
deployment_name=your_embedding_model,
embedding_endpoint=your_search_endpoint_url,
embed_api_key=embed_api_key,
embedding_client=embedding_client
)
2. 构建嵌入向量文件
search_index_manager.build_embeddings_file(
input_directory=input_directory,
output_file=output_directory,
sentences_per_embedding=10
)
参数说明:
sentences_per_embedding:控制每个嵌入向量包含的句子数量,数值越大,搜索时考虑的上下文范围越广input_directory:存放原始数据文件的目录output_directory:生成的嵌入向量文件输出路径
部署配置指南
要启用AI搜索功能,需要设置以下环境变量:
PowerShell环境
$env:USE_AZURE_AI_SEARCH_SERVICE="true"
$env:AZURE_AI_SEARCH_INDEX_NAME="index_sample"
$env:AZURE_AI_EMBED_DEPLOYMENT_NAME="text-embedding-3-small"
Bash环境
export USE_AZURE_AI_SEARCH_SERVICE="true"
export AZURE_AI_SEARCH_INDEX_NAME="index_sample"
export AZURE_AI_EMBED_DEPLOYMENT_NAME="text-embedding-3-small"
CMD环境
set USE_AZURE_AI_SEARCH_SERVICE=true
set AZURE_AI_SEARCH_INDEX_NAME=index_sample
set AZURE_AI_EMBED_DEPLOYMENT_NAME=text-embedding-3-small
环境变量说明:
USE_AZURE_AI_SEARCH_SERVICE:启用/禁用索引搜索功能(默认禁用)AZURE_AI_SEARCH_INDEX_NAME:指定使用的Azure搜索索引名称AZURE_AI_EMBED_DEPLOYMENT_NAME:指定用于创建嵌入向量的模型部署名称
搜索索引管理
创建索引
系统提供了编程方式创建索引的方法:
# 创建Azure搜索索引(如果不存在)
await search_index_manager.create_index(raise_on_error=True)
# 上传嵌入向量到索引
await search_index_manager.upload_documents(embeddings_path)
注意事项:
- 如果索引已存在,系统会直接使用现有索引
- 仅在初始化
SearchIndexManager时未提供维度信息的情况下,才需要vector_index_dimensions参数 - 索引必须包含"title"字段,用于提供正确的引用信息
最佳实践建议
- 数据预处理:确保输入数据经过适当的清洗和格式化
- 嵌入向量维度:根据数据复杂度选择合适的维度大小
- 块大小调整:通过实验确定最佳的
sentences_per_embedding值 - 性能监控:定期检查搜索响应时间和准确性
- 索引更新:建立定期更新索引的机制以保持数据新鲜度
通过本项目的实现,开发者可以快速构建一个结合了大型语言模型和精确文档检索能力的智能搜索系统,显著提升应用程序的信息检索质量和用户体验。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355