SubQuery项目测试环境中的Docker Compose配置优化实践
在SubQuery项目的测试环境搭建过程中,开发团队发现了一些关于Docker Compose配置的问题,这些问题会影响测试的可靠性和稳定性。本文将深入分析这些问题及其解决方案,帮助开发者更好地理解如何优化测试环境配置。
测试重复执行问题分析
在最初的Docker Compose配置中,节点服务(node service)设置了restart: always的重启策略。这一配置会导致一个关键问题:当测试正常完成并退出时,Docker会由于这个策略而自动重启服务,造成测试被重复执行。
这种设计在测试环境中是不合理的,因为:
- 测试应该是一次性执行的,重复执行会导致测试结果混乱
- 资源会被不必要地占用
- 测试报告可能包含重复数据
解决方案是将重启策略修改为restart: unless-stopped。这一策略的区别在于:
unless-stopped:只有在容器非正常退出(非0状态码)或手动停止时才会重启always:无论什么原因退出都会重启
这种修改确保了测试完成后容器会保持停止状态,不会自动重启,从而保证了测试的准确性和可靠性。
未完成区块与历史数据配置冲突
测试框架运行时禁用了历史数据功能(historical disabled),但Docker Compose文件默认启用了未完成区块(unfinalized blocks)功能。这两者之间存在配置冲突,可能导致测试结果不一致。
未完成区块功能通常用于:
- 查询最新的、尚未最终确认的区块链数据
- 提高数据查询的实时性
- 支持某些特定的应用场景
而历史数据功能则用于:
- 访问历史区块信息
- 支持时间点查询
- 提供完整的数据追溯能力
在测试环境中,这种配置冲突可能导致:
- 测试行为与预期不符
- 某些测试用例失败
- 测试结果不可重现
解决方案是修改测试框架,强制禁用未完成区块功能,确保测试环境的一致性。这可以通过以下方式实现:
- 在测试初始化脚本中明确设置相关参数
- 使用环境变量覆盖默认配置
- 在Docker构建阶段注入配置变更
测试环境配置的最佳实践
基于这些问题,我们可以总结出一些测试环境配置的最佳实践:
-
明确区分生产与测试配置:测试环境应该有独立的配置文件,不应直接复用生产配置
-
严格控制容器生命周期:测试容器应该精确控制启动和停止时机,避免自动行为干扰测试
-
确保配置一致性:所有相关配置项应该协调一致,避免功能冲突
-
提供明确的退出机制:测试完成后应该有清晰的清理流程,确保环境可重复使用
-
记录环境状态:测试日志中应该包含完整的配置信息,便于问题排查
通过遵循这些实践,可以构建更加稳定可靠的测试环境,提高SubQuery项目的测试质量和开发效率。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00