FastDeploy中PPYOLOE模型在TensorRT批量推理时输入尺寸小于224的问题分析
问题背景
在使用FastDeploy部署PPYOLOE-S目标检测模型时,当输入图像尺寸小于224×224(如192×192或160×96)时,在TensorRT后端进行批量推理会出现异常结果。具体表现为在批量推理相同图片时,检测结果中随机出现NaN值或零值,特别是当图片中目标较少时,这种现象更容易出现。
现象描述
在Windows 10系统下,使用FastDeploy 1.0.7版本,搭配NVIDIA 3080TI/1660S显卡和CUDA 11.2环境进行测试时发现:
- 正常情况下的检测结果能够正确识别目标
- 异常情况下会出现以下问题:
- 检测框置信度变为NaN
- 检测框坐标值变为0
- 这种现象在批量推理时随机出现
技术分析
经过深入排查,发现问题根源在于Paddle2ONNX转换过程中生成的BatchedNMSDynamic_TRT算子。这个算子在处理小尺寸输入图像时存在稳定性问题,特别是在批量推理场景下表现更为明显。
TensorRT在处理动态形状输入时,会为每个新形状范围重建引擎。当输入尺寸较小时,某些计算可能超出了数值稳定范围,导致结果异常。从日志中可以看到TensorRT引擎重建的过程:
[WARNING] [New Shape Out of Range] input name: image, shape: [10, 3, 96, 192]
[INFO] Start to building TensorRT Engine...
解决方案
针对这一问题,可以采取以下几种解决方案:
-
避免使用BatchedNMSDynamic_TRT:通过修改模型导出配置,不使用这个特定的NMS实现,可以解决结果异常的问题。
-
调整输入尺寸:将输入图像尺寸保持在224×224以上,这是经过充分测试的稳定尺寸范围。
-
使用固定批量大小:在导出模型时指定固定的批量大小,避免动态形状带来的引擎重建问题。
-
升级TensorRT版本:虽然测试中尝试了多个TensorRT版本(8.5.1.7到8.6.1.6)均存在此问题,但持续关注新版本修复情况。
最佳实践建议
对于需要在生产环境中部署PPYOLOE模型的开发者,建议:
- 在模型导出阶段就考虑实际部署时的输入尺寸范围
- 对小尺寸输入进行充分测试验证
- 考虑使用静态形状导出模型以提高推理稳定性
- 在不可避免使用动态形状时,预先收集可能的形状范围并配置到TensorRT优化参数中
这个问题提醒我们,在模型部署过程中,不仅需要考虑算法本身的准确性,还需要关注不同后端实现的特性和限制,特别是在边缘计算等资源受限场景下,输入尺寸的选择可能对最终结果产生重大影响。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0313- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









