PaddleX中SLANet表格识别模型微调效果不佳问题分析
2025-06-07 12:35:31作者:邓越浪Henry
表格识别是OCR领域的重要研究方向,PaddleX提供的SLANet模型在表格识别任务中表现优异。然而在实际应用中,用户反馈在使用2万张PubTables-1m数据集进行微调后,模型性能出现明显下降,表现为边界框定位不准确、识别效果变差等问题。
问题现象分析
从用户提供的对比图可以看出,微调后的模型在表格识别任务中出现了几个典型问题:
- 边界框(Bounding Box)明显变宽,无法准确框定表格内容
- 表格位置识别不准确,与原始内容出现较大偏差
- 验证集上的最佳准确率仅为0.795,远低于预期水平
可能原因分析
数据量不足
虽然用户使用了2万张表格数据进行微调,但表格识别任务对数据量的要求较高。特别是当目标场景与预训练模型的训练数据差异较大时,需要更多的数据来适应新场景。PubTables-1m数据集虽然规模较大,但可能无法完全覆盖实际应用场景的多样性。
数据质量问题
表格识别对数据质量要求较高,包括:
- 表格结构的多样性(有线表、无线表、合并单元格等)
- 图像质量(分辨率、清晰度)
- 标注准确性(边界框位置、文本内容)
如果训练数据与测试数据在表格类型、复杂度等方面存在较大差异,模型性能会显著下降。例如训练集多为简单表格,而测试集包含复杂无线表时,模型难以良好泛化。
训练参数设置
用户提供的训练参数显示:
- 学习率为0.001
- 批量大小为16
- 训练轮数为100
这些参数可能需要根据具体数据集进行调整。特别是学习率设置不当可能导致模型无法有效收敛或陷入局部最优。
解决方案建议
增加训练数据量
建议将训练数据量增加到5万张以上,特别是要确保数据覆盖实际应用中可能遇到的各种表格类型。对于无线表等特殊表格,应有足够数量的样本。
提升数据质量
- 确保训练数据与测试数据在表格类型、复杂度等方面具有相似性
- 检查标注质量,特别是边界框的准确性
- 对图像进行预处理,确保分辨率适中、清晰度良好
优化训练参数
- 采用学习率预热策略,初始学习率可设为0.0001,逐步增加到0.001
- 尝试更大的批量大小(如32或64),以提高训练稳定性
- 使用早停策略,避免过拟合
- 考虑加入数据增强技术,提升模型泛化能力
模型结构调整
对于特殊表格类型(如无线表),可以考虑:
- 在SLANet基础上增加针对性的注意力机制
- 调整特征提取网络的结构
- 加入针对表格结构的特殊处理模块
实践建议
在实际微调过程中,建议采取以下步骤:
- 先在小规模高质量数据(1000-2000张)上进行快速验证,确保训练流程正确
- 逐步增加数据量,观察模型性能变化
- 对不同类型表格进行单独评估,找出模型的薄弱环节
- 针对性地补充训练数据,优化模型性能
表格识别任务的性能提升往往需要数据、模型和训练策略的协同优化。通过系统性的分析和调整,可以显著提升SLANet模型在特定场景下的识别效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
698
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
280
React Native鸿蒙化仓库
JavaScript
270
328