PaddleX中SLANet表格识别模型微调效果不佳问题分析
2025-06-07 10:49:55作者:邓越浪Henry
表格识别是OCR领域的重要研究方向,PaddleX提供的SLANet模型在表格识别任务中表现优异。然而在实际应用中,用户反馈在使用2万张PubTables-1m数据集进行微调后,模型性能出现明显下降,表现为边界框定位不准确、识别效果变差等问题。
问题现象分析
从用户提供的对比图可以看出,微调后的模型在表格识别任务中出现了几个典型问题:
- 边界框(Bounding Box)明显变宽,无法准确框定表格内容
- 表格位置识别不准确,与原始内容出现较大偏差
- 验证集上的最佳准确率仅为0.795,远低于预期水平
可能原因分析
数据量不足
虽然用户使用了2万张表格数据进行微调,但表格识别任务对数据量的要求较高。特别是当目标场景与预训练模型的训练数据差异较大时,需要更多的数据来适应新场景。PubTables-1m数据集虽然规模较大,但可能无法完全覆盖实际应用场景的多样性。
数据质量问题
表格识别对数据质量要求较高,包括:
- 表格结构的多样性(有线表、无线表、合并单元格等)
- 图像质量(分辨率、清晰度)
- 标注准确性(边界框位置、文本内容)
如果训练数据与测试数据在表格类型、复杂度等方面存在较大差异,模型性能会显著下降。例如训练集多为简单表格,而测试集包含复杂无线表时,模型难以良好泛化。
训练参数设置
用户提供的训练参数显示:
- 学习率为0.001
- 批量大小为16
- 训练轮数为100
这些参数可能需要根据具体数据集进行调整。特别是学习率设置不当可能导致模型无法有效收敛或陷入局部最优。
解决方案建议
增加训练数据量
建议将训练数据量增加到5万张以上,特别是要确保数据覆盖实际应用中可能遇到的各种表格类型。对于无线表等特殊表格,应有足够数量的样本。
提升数据质量
- 确保训练数据与测试数据在表格类型、复杂度等方面具有相似性
- 检查标注质量,特别是边界框的准确性
- 对图像进行预处理,确保分辨率适中、清晰度良好
优化训练参数
- 采用学习率预热策略,初始学习率可设为0.0001,逐步增加到0.001
- 尝试更大的批量大小(如32或64),以提高训练稳定性
- 使用早停策略,避免过拟合
- 考虑加入数据增强技术,提升模型泛化能力
模型结构调整
对于特殊表格类型(如无线表),可以考虑:
- 在SLANet基础上增加针对性的注意力机制
- 调整特征提取网络的结构
- 加入针对表格结构的特殊处理模块
实践建议
在实际微调过程中,建议采取以下步骤:
- 先在小规模高质量数据(1000-2000张)上进行快速验证,确保训练流程正确
- 逐步增加数据量,观察模型性能变化
- 对不同类型表格进行单独评估,找出模型的薄弱环节
- 针对性地补充训练数据,优化模型性能
表格识别任务的性能提升往往需要数据、模型和训练策略的协同优化。通过系统性的分析和调整,可以显著提升SLANet模型在特定场景下的识别效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248