首页
/ PaddleX中SLANet表格识别模型微调效果不佳问题分析

PaddleX中SLANet表格识别模型微调效果不佳问题分析

2025-06-07 18:10:29作者:邓越浪Henry

表格识别是OCR领域的重要研究方向,PaddleX提供的SLANet模型在表格识别任务中表现优异。然而在实际应用中,用户反馈在使用2万张PubTables-1m数据集进行微调后,模型性能出现明显下降,表现为边界框定位不准确、识别效果变差等问题。

问题现象分析

从用户提供的对比图可以看出,微调后的模型在表格识别任务中出现了几个典型问题:

  1. 边界框(Bounding Box)明显变宽,无法准确框定表格内容
  2. 表格位置识别不准确,与原始内容出现较大偏差
  3. 验证集上的最佳准确率仅为0.795,远低于预期水平

可能原因分析

数据量不足

虽然用户使用了2万张表格数据进行微调,但表格识别任务对数据量的要求较高。特别是当目标场景与预训练模型的训练数据差异较大时,需要更多的数据来适应新场景。PubTables-1m数据集虽然规模较大,但可能无法完全覆盖实际应用场景的多样性。

数据质量问题

表格识别对数据质量要求较高,包括:

  • 表格结构的多样性(有线表、无线表、合并单元格等)
  • 图像质量(分辨率、清晰度)
  • 标注准确性(边界框位置、文本内容)

如果训练数据与测试数据在表格类型、复杂度等方面存在较大差异,模型性能会显著下降。例如训练集多为简单表格,而测试集包含复杂无线表时,模型难以良好泛化。

训练参数设置

用户提供的训练参数显示:

  • 学习率为0.001
  • 批量大小为16
  • 训练轮数为100

这些参数可能需要根据具体数据集进行调整。特别是学习率设置不当可能导致模型无法有效收敛或陷入局部最优。

解决方案建议

增加训练数据量

建议将训练数据量增加到5万张以上,特别是要确保数据覆盖实际应用中可能遇到的各种表格类型。对于无线表等特殊表格,应有足够数量的样本。

提升数据质量

  1. 确保训练数据与测试数据在表格类型、复杂度等方面具有相似性
  2. 检查标注质量,特别是边界框的准确性
  3. 对图像进行预处理,确保分辨率适中、清晰度良好

优化训练参数

  1. 采用学习率预热策略,初始学习率可设为0.0001,逐步增加到0.001
  2. 尝试更大的批量大小(如32或64),以提高训练稳定性
  3. 使用早停策略,避免过拟合
  4. 考虑加入数据增强技术,提升模型泛化能力

模型结构调整

对于特殊表格类型(如无线表),可以考虑:

  1. 在SLANet基础上增加针对性的注意力机制
  2. 调整特征提取网络的结构
  3. 加入针对表格结构的特殊处理模块

实践建议

在实际微调过程中,建议采取以下步骤:

  1. 先在小规模高质量数据(1000-2000张)上进行快速验证,确保训练流程正确
  2. 逐步增加数据量,观察模型性能变化
  3. 对不同类型表格进行单独评估,找出模型的薄弱环节
  4. 针对性地补充训练数据,优化模型性能

表格识别任务的性能提升往往需要数据、模型和训练策略的协同优化。通过系统性的分析和调整,可以显著提升SLANet模型在特定场景下的识别效果。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
136
1.89 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
71
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.28 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
918
550
PaddleOCRPaddleOCR
飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署) Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
46
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
273
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16